

About PCBox

PCBox [https://86box.net] is an IBM PC system emulator that specializes in running old
operating systems and software designed for IBM PC systems and compatibles
from 1981 through fairly recent system designs based on the PCI bus.

PCBox is released under the GNU General Public License, version 2 or later.
For more information, see the COPYING file [https://github.com/PCBox/PCBox/blob/master/COPYING].

The project maintainer is qeeg [https://github.com/qeeg].

If you need a configuration manager for PCBox, use the 86Box Manager [https://github.com/86Box/86BoxManager], our
officially endorsed PCBox configuration manager, developed by Overdoze (daviunic [https://github.com/daviunic]).

Community

We operate an IRC channel at #pcbox on Libera.chat and a Discord server [https://discord.gg/mWStgCdXus] for discussing anything related
to retro computing and, of course, PCBox. We look forward to hearing from you!

Contents

Using PCBox

	Getting started

	Frequently asked questions

	ROM set

	Menu bar

	Toolbar

	Status bar

	Settings

Emulated hardware

	Machine-specific notes

	Disk images

	Tertiary and quaternary IDE

	Networking

	ISABugger

Development

	Build guide

	Advanced builds

	API

	File formats

Getting started

Here are the basic steps to help you get started with PCBox. The user interface has been designed to resemble Virtual PC, VirtualBox and other virtualizers, so if you used those programs before, this should all look familiar to you.

Step 1: Get the ROM set

PCBox relies on a set of ROM dumps gathered from physical hardware to emulate it. This includes the system BIOS, as well as any option ROMs used by expansion cards. If you try to start PCBox without one, you’ll receive an error and PCBox will close. You need to download the ROM set from here [https://github.com/PCBox/roms/releases/latest], and extract it into one of the supported locations.

Step 2: Meet the main window

Once you got the romset in the right place, you can start PCBox.exe. The main window has three important areas:

	The menu bar at the top, where most controls and options are located. See Menu bar for more information.

	The display area in the middle, which is where the display output from the emulated machine will be rendered.

	The status bar at the bottom, containing icons for quickly accessing the configured peripheral devices. See Status bar for more information.

Step 3: Configure the hardware

When you start an emulated machine, you probably want to configure it with the hardware options you want. This is much like putting together the hardware components to build a PC. To do this, go to the Tools menu and select Settings. This will bring up the Settings window, which has many options to choose from, split into a handful of categories.

Step 4: Configure the BIOS

Once you’ve selected the hardware components you wish to emulate, you need to make sure they’re properly configured. This is done through the system BIOS, the same way it’s done on a real computer. The specifics of this will of course differ from one machine to another, but generally speaking, you need to know how to enter the BIOS, which options to change, and which options to leave alone.

Step 5: Mount some images

Now that you’ve configured everything, you’re ready to run some software in your emulated machine. Maybe you want to install an operating system or play a booter game. In any case, you’ll have to mount some virtual media to get going. You can do this with the icons in the status bar. Icons representing removable media appear semi-transparent when their associated drive is empty, and fully opaque when media is inserted.

When you want to eject virtual media, click on the particular icon again and select Eject (for floppy and ZIP disks) or Empty (for CD-ROMs). The icon becomes semi-transparent again.

Step 6: Mouse and keyboard interaction

Now you’re ready to do some stuff inside the emulated machine. Keyboard input is redirected there automatically whenever the emulator window has focus. All key presses and combinations will be redirected to the emulated machine.

Mouse input has to be manually “captured” and “released”. To capture the mouse in the emulated mahine, simply click inside the renderer area. Your host mouse cursor will disappear and your mouse movement and clicks will be redirected into the emulated machine. Now you can use the mouse inside the emulated machine - if the software and hardware configuration supports it, of course.

To release the mouse, press F8 + F12 simultaneously (on Windows) or Ctrl + End (on Linux). You can also use the middle mouse button for this if the emulated mouse only has two buttons.

Step 7: What now?

If you made it this far, you got the basics of using PCBox, but there’s more features and options to explore. For example, you can try out PCBox Manager [https://github.com/PCBox/PCBoxManager] for easier management of multiple emulated machines. You can see what’s under the View menu, or look at some of the more obscure options in the Settings window.

You may eventually encounter the need to get files into your machine. Please see this section for information on disk image formats and this section on creating and using disk images.

Keep in mind that because PCBox is constantly in development, various problems will come and go. If you think something’s not working the way it should, consider submitting an issue on GitHub [https://github.com/PCBox/PCBox/issues] or joining official support channels on Discord or IRC.

Have fun!

Frequently asked questions

What is the difference between PCBox and applications like VirtualBox or Virtual PC?

VirtualBox, Virtual PC and similar applications are hypervisors. For the most part, they execute code running in the virtual machine as is, and only step in whenever it is required to enforce the separation of a virtual machine from the rest of the system. This also means that the virtual machine sees the same CPU as the host system.

They also mostly implement peripherals that are custom designed to let the guest take full potential of the virtualizer as long as appropriate drivers, which are distributed with the provided additions, are installed. This is great for modern operating systems and software that does is not designed for a specific hardware target, but rather an abstraction interface such as DirectX; however, running older applications and games will often lead to a suboptimal experience, as hypervisors don’t tend to be designed with this usecase in mind.

On the other hand, PCBox is a system emulator. It implements a whole system in software, which includes the CPU, chipset and additional cards, if any. Furthermore, it interprets every single instruction running in the virtual machine, and while that comes with the obvious tradeoff of emulation being more CPU intensive than virtualization, it also makes it possible to simulate authentic behavior of the original hardware, including its speed. This in turn allows running countless games and demos that wouldn’t have ran in a hypervisor before, as they simply run too fast or fail to make use of various hardware quirks that don’t exist in modern processors.

In addition, the large variety of peripherals emulated by PCBox also makes it possible to use existing software, games and drivers that had been specifically designed for such peripherals. However, this obviously means that the emulator is also stuck with the limitations of the original hardware, and therefore it is not possible to offer advanced features such as mouse pointer integration.

What is the difference between PCBox and QEMU?

PCBox and QEMU are both emulators, as they can both implement a whole computer system in software. However, QEMU is primarily designed to performantly translate between different instruction sets by implementing a generic CPU, and therefore doesn’t try to emulate all the various quirks of the real hardware like PCBox.

Similarly to hypervisors, QEMU also implements certain fictional peripherals that are designed to reduce the emulation overhead. Again, this all is great for modern software that is not designed for a specific hardware target, but not so great for older software.

A common point of confusion is also QEMU’s option to pick a specific CPU to be emulated, similarly to PCBox. This however only has the effect of changing the reported CPU identification (CPUID instruction in x86) and does not impact the behavior of the emulation in any way.

What is the difference between PCBox and PCem?

PCBox and PCem are both PC system emulators. In fact, PCBox originally started out as a fork of PCem in 2016. However, the codebases of both emulators have since then diverted by a lot. Because of this, features and bugs found in one emulator do not necessarily have to be present in the other.

In general, PCBox focuses more on the accuracy of emulation, especially for older 8088/8086 based systems. This makes it more compatible with older applications, games and demos that make use of clever hardware tricks to make do with the limited computing power of the time.

Meanwhile, PCem often takes various shortcuts to improve performance at the cost of accuracy, which does end up limiting the selection of software it can run.

My virtual machine does not run at 100% speed, what do I do?

If the emulation speed is consistently way under 100%, then your configuration is too demanding for your host system. Try to pick a slower emulated CPU speed.

However, if you only experience casual drops in emulation speeds, you should not instantly worry, as the guest might simply be doing some heavy I/O operations.

What is the top VM configuration my system will handle?

There is no formula that would tell you this. In general, the higher the host’s IPC (instructions per clock) rating, the higher emulated CPU speeds it can handle. However, the emulation speeds also depend on the kind of software that runs in the virtual machine.

Therefore, the best way to optimize your virtual machine configuration is simply trial and error.

ROM set

PCBox relies on a set of ROM dumps gathered from physical hardware to emulate it. This includes the system BIOS, as well as any option ROMs used by expansion cards.

The ROM set is organized into several directories for each device type, each of which contains futher subdirectories for each machine or device model or category.

Note

The expected file names of the ROM dumps and their locations within the set are hardcoded in the emulator. If you rename them or add your own dumps with different file names, the emulator will not be able to make use of them.

Search path

The emulator utilizes a search path mechanism to locate ROMs. By default, the following locations are considered:

	roms subdirectory in the VM path

	roms subdirectory in the same directory as the emulator executable

	Platform-specific locations

A custom location can be specified by using the -R or --rompath command line argument, which then precedes any other considered locations.

Windows

The following locations are searched on Windows:

	%LOCALAPPDATA%\PCBox\roms

	%PROGRAMDATA%\PCBox\roms

Unix

PCBox honors the XDG base directory specification on Linux and other Unix-compatible platforms. The following locations are searched:

	$XDG_DATA_HOME/PCBox/roms

	PCBox/roms subdirectory in each path listed in $XDG_DATA_DIRS

This usually resolves to ~/.local/share/PCBox/roms, /usr/local/share/PCBox/roms and /usr/share/PCBox/roms (in order).

macOS

The following locations are searched on macOS:

	~/Library/Application Support/net.86box.PCBox/roms

	/Library/Application Support/net.86box.PCBox/roms

Tip

The list of all paths searched when loading ROMs is printed to the log and standard output when PCBox starts.

Menu bar

The menu bar located at the top of the PCBox window provides controls for the emulated machine as a whole, its display, and the PCBox user interface.

Important

On macOS, the Exit (Quit), Preferences and About PCBox options are found in the PCBox application menu instead of the locations outlined here.

Action

	Keyboard requires capture: require the mouse to be captured for keypresses to be forwarded to the emulated machine. Enabling this option allows the use of keyboard combinations (such as Alt+Tab) on the host system while PCBox is focused.

	Right CTRL is left ALT: let the right Ctrl key act as a left Alt key, to simulate some special keyboards where the Alt key is located on the right side of the space bar.

	Tablet tool: select the pointing tool to use on the drawing tablet. This option will only be available when emulating a tablet.

	Hard Reset: force a reset of the emulated machine. Requires confirmation, which can be disabled by checking the Don’t show this message again box.

	Ctrl+Alt+Del: send a Ctrl+Alt+Del key combination to the emulated machine. You can alternatively press Ctrl+F12 to send that combination.

	Ctrl+Alt+Esc: send a Ctrl+Alt+Esc key combination to the emulated machine.

	Pause: pause emulation of the machine. Uncheck this option to resume emulation.

	Exit: quit PCBox. Requires confirmation, which can be disabled by checking the Don’t show this message again box.

View

	Hide toolbar: hides the toolbar below the menu bar.

	Hide status bar: hides the status bar at the bottom of the window.

	Show non-primary monitors: shows or hides the secondary display window if a secondary video card is configured.

	Resizeable window: allow the PCBox window to be freely resized. Unchecking this option will also return the window to its normal size.

	Remember size & position: automatically save the size and position of the PCBox window to the emulated machine’s configuration file.

	Renderer: select a graphical renderer for the emulated display.

	Qt (Software) is recommended in most cases.

	Qt (OpenGL), Vulkan and Direct3D 9 are known to perform better on some host systems. Try these if your system is struggling to maintain 100% emulation speed. Vulkan may not be available if the host GPU is not Vulkan-capable, and Direct3D 9 is only available on Windows hosts.

	OpenGL (3.0 Core) allows for shader effects to be applied to the emulated display, however, it is not compatible with older integrated GPUs.

	Renderer options: open a window to configure the OpenGL (3.0 Core) renderer. This option will be available if that renderer is selected.

	Target framerate: select the framerate at which the emulated display is updated. Synchronize with video automatically uses the emulated display’s current refresh rate.

	VSync: enable vertical sync. Recommended if tearing artifacts are observed.

	Browse: load a .glsl shader file to apply to the emulated display.

	Remove: disable the currently-loaded shader.

Note

	Many shaders are available for simulating CRT displays, VHS tapes and other aesthetics; the RetroArch glsl-shaders repository [https://github.com/libretro/glsl-shaders] is a good place to start.

	Shaders that take advantage of multipass and previous frames are not supported.

	.cg and .cgp shaders are not supported either, as these formats are long deprecated.

	Specify dimensions: open a window where an exact size (in pixels) for the emulated display can be set. If checked, the Lock to this size box prevents changes in the emulated display’s resolution from overriding the specified size.

	Force 4:3 display ratio: stretch the emulated display to a 4:3 aspect ratio, independently of the emulated machine’s screen resolution.

	Window scale factor: scale the emulated display to half (0.5x), normal (1x), 50% larger (1.5x) or double (2x) sizes.

	Filter method: select the filtering method (Nearest or Linear) to be used when scaling the emulated display.

	HiDPI scaling: automatically scale the emulated display to real size if your host system has a HiDPI display. This option can be used alongside Window scale factor above.

Note

If HiDPI scaling is disabled on a host with a HiDPI display, the emulated display’s size may be off by one pixel due to an integer scaling limitation.

	Fullscreen: enter full screen mode. Press Ctrl+Alt+Page Down to go back to windowed mode. You can also enter full screen mode by pressing Ctrl+Alt+Page Up.

	Fullscreen stretch mode: select the picture mode to use when in full screen mode.

	Full screen stretch: stretch the emulated display to completely fill the host display.

	4:3: stretch the emulated display to a 4:3 aspect ratio, then scale it to fit the host display.

	Square pixels (keep ratio): scale the emulated display to fit the host display, without changing the aspect ratio.

	Integer scale: scale the emulated display to the largest integer scale factor to fit the host display. This provides the highest possible picture quality, at the cost of black bars if the host display’s resolution is not divisible by the emulated display’s resolution.

	EGA/(S)VGA settings: contains display settings specific to EGA, VGA and Super VGA video hardware.

	Inverted VGA monitor: emulate a VGA monitor with inverted colors.

	VGA screen type: select the VGA monitor type to emulate. Color, Grayscale, Amber, Green and White phosphor monitors can be selected.

	Grayscale conversion type: select the color-to-grayscale conversion profile (BT.601, BT.709 or Average) to use when a grayscale monitor is selected.

	CGA/PCjr/Tandy/EGA/(S)VGA overscan: add an overscan border around the display. This border is only added when emulating the specified video hardware types.

	Change contrast for monochrome display: optimize the contrast of monochrome CGA monitors for 4-color operation.

Media

This menu lists all storage drives and network cards attached to the emulated machine, and provides the same controls that are accessible by clicking the respective device’s icon on the status bar.

The Clear image history option empties the list of recently-loaded image files or folders on all storage drives.

Tools

	Settings: open the Settings window to configure the emulated machine.

	Update status bar icons: enable the activity lights on status bar icons. Unchecking this option may improve emulation performance on low-end host systems.

	Enable Discord integration: enable Discord Rich Presence. PCBox shares the emulated machine’s name, model and CPU with other Discord users.

Note

Integration requires the Discord desktop app, running on x86 or x64 Windows, x86_64 Linux or Intel macOS. Discord does not provide integration support for other operating systems / architectures or the browser app. Additionally, integration will not be available on Windows if the included discord_game_sdk.dll file is missing from the PCBox directory.

	Take screenshot: take a screenshot of the emulated display. Screenshots are saved as .png images in the screenshots subdirectory found in the emulated machine’s directory, which can be opened with the Open screenshots folder option below.

	Sound gain: open the sound gain control, which is also accessible through the status bar.

	Preferences: open the Preferences window, which provides the following options:

	Language: select a language for the PCBox user interface.

	Icon set: select an icon theme for the status bar and Settings window.

	Mouse sensitivity: adjust the emulated mouse’s tracking sensitivity.

	Select media images from program working directory: if checked, starts any file open/save prompts on the emulated machine’s directory. This option is particularly useful for macOS users.

	MCA devices: open the MCA devices window, which lists the IDs and required Adapter Definition Files [https://ardent-tool.com/adapters/ADF.html] of all Micro Channel devices installed on the emulated machine. This option will only be available when emulating a Micro Channel Architecture-based machine.

	Open screenshots folder: open the host system’s file browser on the directory where screenshots of this emulated machine are saved.

Help

	Documentation: open the very documentation you’re reading.

	About PCBox: show credits and license information about PCBox.

Toolbar

The toolbar located at the top of the PCBox window (right below the menu bar) has two purposes: it provides quick actions for the emulated machine on its left hand side, and displays status information on its right hand side.

[image: pause] [image: run] Pause/resume execution

Pause emulation of the machine. Press again to resume emulation.

Note

Emulation is automatically paused when the emulated machine enters ACPI sleep mode.

[image: hard_reset] Hard reset

Force a reset of the emulated machine. Requires confirmation, which can be disabled by checking the Don’t show this message again box.

[image: send_cad] [image: send_cae] Press Ctrl+Alt+Del/Ctrl+Alt+Esc

Send a Ctrl+Alt+Del (left-most icon) or Ctrl+Alt+Esc (right-most icon) key combination to the emulated machine. You can alternatively press Ctrl+F12 to send a Ctrl+Alt+Del combination.

[image: settings] Settings

Open the Settings window to configure the emulated machine.

Status area

The right hand side of the toolbar displays status information, such as:

	Emulation speed in percentage. If this number stays consistently below 100%, your host system is not keeping up with emulating the configured hardware.

	Mouse state (captured or released) if a mouse is enabled.

	Pause indicator if emulation is paused.

Status bar

The status bar located at the bottom of the PCBox window provides icons related to devices attached to the emulated machine. Move your mouse cursor over an icon to see what device it represents. Most icons can be clicked on to access options related to their respective devices, which are listed below, and image files can be dropped on the icons for removable media devices such as floppy and CD-ROM drives. Additionally, a green indicator light will appear on an icon when its device is in use, unless Update status bar icons is disabled.

[image: cassette] Cassette deck

A cassette tape icon will appear if IBM cassette emulation is enabled.

	New image: create a new cassette tape image file.

	Existing image: insert a cassette tape image file into the deck. Dragging and dropping an image file on the icon will also load it.

	Existing image (Write-protected): insert a cassette tape image file into the deck as a read-only tape.

	Record: start recording data to the cassette tape. Not available if the tape is read-only.

	Play: start playing the cassette tape.

	Rewind to the beginning: rewind the cassette tape to its beginning.

	Fast forward to the end: fast forward the cassette tape to its end.

	Eject: remove the currently-inserted cassette tape from the deck.

[image: cartridge] PCjr cartridges

Two cartridge icons will appear if the IBM PCjr is being emulated. Each icon corresponds to a cartridge slot on the PCjr’s front panel.

	Image: insert a cartridge image file into this slot. Inserting a cartridge will reset the PCjr. Dragging and dropping an image file on the icon will also load it.

	Eject: remove the currently-inserted cartridge from this slot.

[image: floppy_35] [image: floppy_525] Floppy drives

A 3.5” or 5.25” floppy icon will appear for each configured floppy drive.

	New image: create a new disk image file. Opens the New Image window, which lets you select the image size and where to save the file.

	Existing image: insert a disk image file into this drive. Dragging and dropping an image file on the icon will also load it.

	Existing image (Write-protected): insert a disk image file into this drive as a read-only disk.

	A history of the last few images that were loaded into this drive. Click on an entry to load it back.

	Export to 86F: convert the currently-inserted disk image file to PCBox’s 86F surface image format. You will be asked where to save the converted file.

	Eject: remove the currently-inserted disk from this drive.

[image: cdrom] CD-ROM drives

A CD icon will appear for each configured CD-ROM drive.

	Mute: mute any CD audio played through this drive’s analog output. CD audio is unmuted by default on the first configured CD-ROM drive.

	Image: insert a CD-ROM or DVD-ROM disc image file into this drive. Dragging and dropping an image file on the icon will also load it.

	Folder: insert a virtual CD-ROM or DVD-ROM with the contents of a host folder into this drive. Dragging and dropping a folder on the icon will also load it.

	A history of the last few images or folders that were loaded into this drive. Click on an entry to load it back.

	Eject: remove any disc inserted into this drive.

[image: zip] [image: mo] ZIP and MO drives

A ZIP or MO icon will appear for each configured additional removable storage drive.

	New image: create a new disk image file. Opens the New Image window, which lets you select the image size and where to save the file.

	Existing image: insert a disk image file into this drive. Dragging and dropping an image file on the icon will also load it.

	Existing image (Write-protected): insert a disk image file into this drive as a read-only disk.

	Eject: remove the currently-inserted disk from this drive.

	Reload previous image: reinsert the last disk image file selected through the Existing image options.

[image: hard_disk] Hard disks

A hard disk icon will appear for each configured hard disk bus. For example, if you have both IDE and SCSI hard disks configured, two hard disk icons will appear: one representing all IDE disks, and another one representing all SCSI disks. No options are available.

[image: network] Network

A network icon will appear for each configured network card.

	Connected: connect this card to its network. Network cards with link state detection support will report a disconnected cable if this option is unchecked.

[image: sound] Sound

This icon is always present. Double-clicking it opens a sound gain control, which allows you to increase the loudness of all audio produced by the emulated machine’s PC speaker, sound cards and other sound hardware.

Note

The gain control does not apply to MIDI music sent to a software synthesizer through the System MIDI device, as these synthesizers are external to PCBox.

Additional information area

This area, located to the right of the icons described above, contains additional information which may be provided by components such as the ISABugger and POST card.

Monitor sleep mode

The Monitor in sleep mode message will be displayed if the emulated monitor has been put into DPMS sleep mode by the operating system. Pressing a key or moving the mouse is often enough to wake the monitor up.

ISABugger

The ISABugger’s hexadecimal displays and LED banks are displayed here. See ISABugger for more information.

POST card

The leftmost hexadecimal value is the most recent POST code reported, while the rightmost value is the second most recent code, like on a real dual-display POST card. A value of -- indicates that no POST code has been reported yet.

Note

The additional information area can only be used by one component at a time. If both the ISABugger and the POST card are enabled simultaneously, the POST card takes over whenever a POST code is reported, and the ISABugger takes over whenever one of its registers is written to. The Monitor in sleep mode message is high-priority and will override all other components.

Settings

The Settings window allows you to configure the emulated machine.

If any changes were made to the settings, you will be asked whether or not you want to save the changes upon pressing OK or closing the window. Saving changes will hard reset the emulated machine. Press Cancel to immediately discard all changes.

Settings pages

	 Machine

	 Display

	 Input devices

	 Sound

	 Network

	 Ports (COM & LPT)

	 Storage controllers

	 Hard disks

	 Floppy & CD-ROM drives

	 Other removable devices

	 Other peripherals

[image: machine] Machine

The Machine page contains settings related to the emulated machine as a whole, such as the machine type, CPU type and amount of memory.

Machine type / Machine

Machine/motherboard model to emulate. The Machine box lists all available models for the machine class selected on the Machine type box.

The Configure button opens a new window with settings specific to the machine’s onboard devices, such as the amount of installed video memory for an onboard video chip.

CPU type / Speed

Main processor to emulate. The Speed box lists all available speed grades for the processor family selected on the CPU type box. These boxes only list processor types and speed grades supported by the machine selected above.

FPU

Math co-processor to emulate. This box is not available if the processor selected above has an integrated co-processor or lacks support for an external one.

Wait states

Number of memory wait states to use on a 286- or 386-class processor. This box is not available if any other processor family is selected above.

Memory

Amount of RAM to give the emulated machine. The minimum and maximum allowed amounts of RAM will vary depending on the machine selected above.

Dynamic Recompiler

Enable the dynamic recompiler, which provides faster but less accurate CPU emulation. The recompiler is available as an option for 486-class processors, and is mandatory starting with the Pentium.

Time synchronization

Automatically copy your host system’s date and time over to the emulated machine’s hardware real-time clock. Synchronization is performed every time the emulated operating system reads the hardware clock to calibrate its own internal clock, which usually happens once on every boot.

	Disabled: do not perform time synchronization. The emulated machine’s date and time can be set through its operating system or BIOS setup utility. Time only ticks while the emulated machine is running.

	Enabled (local time): synchronize the time in your host system’s configured timezone. Use this option when emulating an operating system which stores local time in the hardware clock, such as DOS or Windows.

	Enabled (UTC): synchronize the time in Coordinated Universal Time (UTC). Use this option when emulating an operating system which stores UTC time in the hardware clock, such as Linux.

[image: display] Display

The Display page contains settings related to the emulated machine’s 2D and 3D video cards.

Video

Video card to emulate. This box only lists cards supported by the machine’s expansion buses. On machines equipped with an onboard video chip, the Internal option enables the onboard video.

The Configure button opens a new window with settings specific to the selected video card, such as the amount of video memory.

Video #2

Optional secondary video card to emulate. Only the MDA, Hercules and Hercules Plus monochrome cards are currently supported as secondary options. The secondary card’s video output is displayed on a separate window.

As with the primary card above, the Configure button can be used to configure the selected card.

Voodoo Graphics

Emulate a 3dfx Voodoo add-on 3D accelerator, connected to both the PCI bus and the video card selected above.

The Configure button provides the following settings:

	Voodoo type: type of Voodoo card to emulate.

	Voodoo Graphics: the original Voodoo model, with a single Texture Mapping Unit operating at 50 MHz.

	Obsidian SB50 + Amethyst: a variant of the Voodoo Graphics, with two Texture Mapping Units operating at 50 MHz.

	Voodoo 2: the second Voodoo model, with two Texture Mapping Units operating at 90 MHz, as well as SLI support.

Note

The Voodoo Banshee and Voodoo 3 are independent video cards, which are not found here; they must be selected on the Video box above. For these cards, the Configure button next to the Video box provides similar settings to the ones listed here.

	Framebuffer memory size / Texture memory size: amount of video memory for the Frame Buffer Interface and Texture Mapping Unit(s), respectively.

	Bilinear filtering: apply bilinear filtering to smooth out textures displayed on screen.

	Screen Filter: apply a filter to make the screen picture resemble the DAC (digital-to-analog converter) output of a real Voodoo card.

	Render threads: split the workloads of each Voodoo card into different CPU threads for faster emulation. The recommended amount of render threads depends on your host system’s CPU core count, and whether or not Voodoo 2 SLI is enabled:

	Host cores

	Recommended render threads

	Single card

	Voodoo 2 SLI

	2

	1

	1

	4

	2

	1

	6 or 8

	4

	2

	10 or more

	4

	4

	SLI: add a second Voodoo 2 card to the system, connected to the first one through a Scan Line Interleave (SLI) interface.

	Recompiler: enable the Voodoo recompiler for faster emulation.

8514/A / XGA

Emulate an IBM 8514/A or XGA add-on graphics accelerator. Both the original IBM cards for the MCA bus and generic clone cards for the ISA bus are available; the correct card is automatically selected based on the machine’s supported expansion buses.

The Configure button next to the XGA opens a new window where the card type (XGA-1 or XGA-2) and initial BIOS address can be configured.

Note

Pairing the 8514/A and XGA with each other or with a video card from S3 may result in compatibility issues, as each card implements a set of 8514/A features.

[image: input_devices] Input devices

The Input devices page contains settings related to the emulated machine’s mouse, joysticks and other input devices.

Mouse

Emulate a pointing device. The following mouse types are supported:

	Bus mouse: ISA expansion card with a mouse interface. The I/O port and IRQ used by the card are configurable.

	Serial mouse: connected to the serial port of your choosing. The selected serial port must be enabled on the Ports tab.

	PS/2 mouse: connected to the PS/2 port. Only available on machines with a PS/2 mouse port.

The Configure button opens a new window with settings specific to the selected mouse type, such as the number of buttons, or the serial port for a serial mouse.

Joystick

Emulate one or more game port controller(s). The following controller types are supported:

	None: no controller connected.

	2-axis, 2-button joystick(s): up to two controllers, each with two buttons and an analog stick.

	2-axis, 4-button joystick: single controller with four buttons and an analog stick.

	3-axis, 2-button joystick: single controller with two buttons and an analog stick and a throttle.

	3-axis, 4-button joystick: single controller with four buttons and an analog stick and a throttle.

	2-axis, 6-button joystick: single controller with four regular buttons, two additional buttons mapped to the third and fourth axes, and an analog stick.

	2-axis, 8-button joystick: single controller with four regular buttons, four additional buttons mapped to the third and fourth axes, and an analog stick.

	4-axis 4-button joystick: single controller with four buttons and two analog sticks (or four axes).

	CH Flightstick Pro: flight controller with four buttons, three axes and a POV hat.

	Microsoft SideWinder Pad: up to four controllers, each with 10 buttons and a directional pad. Not compatible with standard game port joysticks; requires a driver in the emulated machine.

	Thrustmaster Flight Control System: flight controller with four buttons, two axes and a POV hat.

Note

A generic game port card is emulated if the machine has no game ports (either built-in or as part of a Plug and Play or PCI sound card) to accomodate the selected controller. This generic card uses the default I/O ports 200-207h, which can be changed through ISA Plug and Play. On IBM PS/1 machines, the generic card uses port 201h only and has no Plug and Play capability.

Joystick 1-4…

Configure the mappings for each emulated game port controller. The Device box lists all game controllers connected to the host, while the other boxes allow you to map each axis or button of the emulated controller to the real controller.

If you’re not sure as to what axis or button numbers map to which sticks and buttons on the real controller, use the Test feature of Windows’ Game Controllers control panel (joy.cpl). Keep in mind PCBox’s button numbers start with 0, whereas the control panel’s numbers start with 1.

Note

XInput controllers are accessed through their DInput emulation mode at the moment.

[image: sound] Sound

The Sound page contains settings related to the emulated machine’s audio hardware.

Parallel port sound devices such as the Disney Sound Source and Covox Speech Thing are not present on this page; they can be configured through the Ports page.

Sound card

Sound card to emulate. Only cards supported by the machine’s expansion buses will be listed. On machines equipped with an onboard sound chip, the Internal option enables the onboard sound.

The Configure button opens a new window with settings specific to the selected sound card, such as the I/O ports, IRQ and DMA channels for ISA cards.

Emulation for the Yamaha OPL series of synthesizers (used by many of the emulated cards) is provided by a modified Nuked OPL3 [https://github.com/nukeykt/Nuked-OPL3] or ymfm [https://github.com/aaronsgiles/ymfm] library, per the selection below.

MIDI Out Device

Device to output MIDI music to, for sound cards equipped with an external MIDI output.

	None: don’t output MIDI music.

	FluidSynth: a software soundfont synthesizer. Selecting a soundfont file is required. There will be no synthesizer output if no soundfont is configured, or (on Windows hosts) if the included libfluidsynth.dll or libfluidsynth64.dll file is missing from the PCBox directory.

	Roland MT-32/CM-32L Emulation: emulate a Roland synthesizer module. Emulation is provided by the Munt [http://munt.sourceforge.net] library.

	System MIDI: output to a MIDI device on the host system, such as the Windows software synthesizer or a USB MIDI adapter.

The Configure button opens a new window with settings specific to the selected output device, such as the soundfont to use for FluidSynth and the host MIDI device to use for System MIDI.

MIDI In Device

Device to receive MIDI music from, for sound cards equipped with an external MIDI input.

	None: don’t receive MIDI music.

	System MIDI: receive from a MIDI device on the host system, such as a USB MIDI adapter.

The Configure button opens a new window with settings specific to the selected input device, such as the host MIDI device to use for System MIDI.

Standalone MPU-401

Emulate a standalone Roland MIDI Processing Unit ISA card, which allows for MIDI input and output without a MPU-401-equipped sound card.

The I/O port and IRQ can be configured through the Configure button.

Innovation SSI-2001

Emulate the Innovation SSI-2001 ISA sound card, based on the MOS Technology 6581 chip (commonly known as the Commodore SID) and supported by a limited number of games.

SID emulation is provided by the reSID [http://www.zimmers.net/anonftp/pub/cbm/crossplatform/emulators/resid/] library.

CMS / Game Blaster

Emulate the Creative Music System or Game Blaster ISA sound card, based on dual Philips SAA1099 chips and supported by some games.

Gravis Ultrasound

Emulate the Gravis UltraSound ISA sound card.

The I/O port and amount of onboard RAM can be configured through the Configure button.

Use FLOAT32 sound

Use the 32-bit floating point (instead of 16-bit integer) data type for audio output, which is less prone to clipping but may not work at all on some host systems. Try disabling this if you’re getting no audio output from PCBox at all.

FM synth driver

Yamaha OPL2/3 emulation back-end to use. Nuked is the default, while YMFM may improve emulation performance at the cost of accuracy.

Note

YMFM is always used for OPL4 emulation on sound cards equipped with that synthesizer.

[image: network] Network

The Network page contains settings related to the emulated machine’s network connectivity.

Network Interface Controllers

Network interface cards to emulate. Up to 4 independent network cards are supported.

Mode

Network emulation mode to use on this card. See Networking for more information on these.

	None: disable networking.

	PCap: connects directly to a host network adapter. Similar to the Bridge mode on other emulators and virtualizers.

	SLiRP: creates a private network with a virtual router. Similar to the NAT mode on other emulators and virtualizers.

Interface

Host network adapter to use for PCap mode on this card. If no adapters appear on this list, make sure that:

	A WinPcap-compatible driver is installed;

	The installed driver is compatible with your version of Windows;

	At least one compatible (wired) network adapter is present.

Adapter

Network card to emulate. Only cards supported by the machine’s expansion buses will be listed.

The Configure button opens a new window with settings specific to the selected network card, such as the I/O port and IRQ for ISA cards.

The [LPT] Parallel Port Internet Protocol network adapter requires a PLIP Network device to be attached to a parallel port.

[image: ports] Ports (COM & LPT)

The Ports (COM & LPT) page contains settings related to the emulated machine’s I/O ports.

LPT1-4 Device

Emulated device to connect to the given parallel (LPT) port.

	None: no device connected.

	Disney Sound Source: sound device with a resistor ladder DAC (digital-to-analog converter) and FIFO, supported by many games.

	LPT DAC / Covox Speech Thing: sound device with a simple resistor ladder DAC, supported by many games (through compatibility with the Disney Sound Source above), demos and trackers.

	Stereo LPT DAC: stereo version of the LPT DAC, using the Strobe pin to select the active output channel.

	Generic Text Printer: simple printer capable of outputting text only.

	Printed documents are saved as .txt files in the printer subdirectory found in the emulated machine’s directory.

	Generic ESC/P Dot-Matrix: EPSON ESC/P-compatible printer.

	Printed pages are saved as .png files in the printer subdirectory found in the emulated machine’s directory.

	Use the EPSON LQ-2500 printer driver for best results.

	This printer will not work on Windows hosts if the included freetype.dll file is missing from the PCBox directory.

	Generic PostScript Printer: PostScript-compatible printer with PDF output.

	Printed documents are saved as .ps files in the printer subdirectory found in the emulated machine’s directory. These files are automatically converted to .pdf once printing is completed.

	The original .ps files may remain in the directory if PDF conversion fails, or (on Windows hosts) if the included gsdll32.dll or gsdll64.dll file is missing from the PCBox directory.

	Use the generic PostScript printer driver provided by your operating system.

	Windows 95 and newer do not have a generic PostScript driver; use the Apple LaserWriter IIf driver for grayscale, or the Apple Color LW 12/660 PS driver for color.

	PLIP Network: A Parallel Line Internet Protocol [https://en.wikipedia.org/wiki/Parallel_Line_Internet_Protocol] cable connected to the emulated network.

	The emulated network adapter must also be set to [LPT] PLIP.

	PLIP is compatible with the DOS plip.com packet driver and the Linux plip driver (only with interrupts enabled). It is not compatible with the Windows Direct Cable Connection feature or any other parallel port networking implementations.

	PLIP works best with the SLiRP network type due to its point-to-point nature.

Serial port 1-4

Enable emulation of serial ports ranging from COM1 to COM4. Any ports not provided by the machine’s motherboard will be emulated as generic ISA or VLB serial cards.

Parallel port 1-4

Enable emulation of parallel ports ranging from LPT1 to LPT4. Any ports not provided by the machine’s motherboard will be emulated as generic ISA or VLB parallel cards.

Note

The 4th parallel port is not widely supported. It is located at I/O port 268h.

[image: storage_controllers] Storage controllers

The Storage controllers page contains settings related to the emulated machine’s disk drive controllers.

HD Controller

Hard disk drive controller card to emulate. This box only lists cards supported by the machine’s expansion buses. MFM, RLL, ESDI and IDE controllers are available. Selecting an IDE controller is not required for machines with onboard IDE.

The Configure button opens a new window with settings specific to the selected controller card, such as the BIOS option ROM address.

FD Controller

Floppy disk drive controller card to emulate. Selecting a controller is not required, unless you wish to use one of the add-on controllers for adding high-density 1.44M floppy support to XT machines.

The BIOS option ROM address used by the selected controller can be configured through the Settings button.

Tertiary / Quaternary IDE Controller

Add a third or fourth (respectively) IDE channel to the emulated machine, through a generic ISA or VLB IDE controller card.

The IRQ used by each controller can be configured through its respective Settings button.

Note

The tertiary and quaternary controllers are not Plug and Play compliant by default; they may require manual configuration of emulated operating systems, and may not be bootable. See Tertiary and quaternary IDE for more information.

SCSI

SCSI host bus adapter cards to emulate. Up to 4 SCSI cards are supported. The selection boxes only list cards supported by the machine’s expansion buses.

The Configure buttons open a new window with settings specific to the corresponding SCSI card, such as the I/O port and IRQ for ISA cards.

Cassette

Enable IBM cassette tape emulation. The cassette deck can be controlled through the status bar or Media menu.

Note

While cassette emulation can be enabled on any machine, it is only usable on the IBM PC, PCjr and other machines with an IBM cassette port.

[image: hard_disk] Hard disks

The Hard disks page contains settings related to the emulated machine’s fixed disks.

Hard disk list

All hard disks attached to the emulated system are listed, with the following information:

	Bus: storage bus the disk is attached to, as well as the disk’s bus channel or ID. These can be changed through the Bus and Channel/ID boxes below the list.

	File: path to the disk image file.

	C/H/S: disk size in cylinders, heads and sectors, respectively.

	MB: disk size in megabytes.

Speed profiles

The Speed box below the hard disk list controls the emulated speed profile for the selected disk. Speed emulation takes the rotation speed, physical layout and cache size of an average period-correct drive into account. The RAM Disk profile runs the drive as fast as the host can manage.

Note

Speed profiles are currently only available for IDE and ESDI hard disks. The RAM Disk profile is always used on other disk types.

Adding a new disk

The New… button opens a new window allowing you to create an existing hard disk image file.

	File name: where to save the disk image file. See Hard disk images for a list of supported image formats.

	Cylinders/Heads/Sectors: CHS parameters for the disk image. These boxes control the Size (MB) box below.

	Size (MB): the disk image’s size in MB. This box controls the Cylinders, Heads and Sectors boxes above. There are limits to how big a hard disk image can be; see Hard disk size limits for more information.

	Bus: storage bus to attach the disk to.

	Channel/ID: where to attach the disk on the selected storage bus.

	On IDE disks, the first number corresponds to the IDE channel, and the second number corresponds to the Master/Slave position:

	Value

	Channel

	Device

	0:0

	Primary

	Master

	0:1

	Primary

	Slave

	1:0

	Secondary

	Master

	1:1

	Secondary

	Slave

	2:0

	Tertiary

	Master

	2:1

	Tertiary

	Slave

	3:0

	Quaternary

	Master

	3:1

	Quaternary

	Slave

	On SCSI disks, the first number corresponds to the SCSI controller (starting at 0 instead of 1), and the second number is the SCSI ID within that controller:

	Value

	Controller

	SCSI ID

	0:00

	Controller 1

	0

	⋮

	⋮

	0:15

	15

	1:00

	Controller 2

	0

	⋮

	⋮

	1:15

	15

	2:00

	Controller 3

	0

	⋮

	⋮

	2:15

	15

	3:00

	Controller 4

	0

	⋮

	⋮

	3:15

	15

	On MFM/RLL, XTA and ESDI disks, the second number is 0 for the first drive on the controller, and 1 for the second drive.

Note

If the disk is attached to a channel or controller that doesn’t exist, such as the tertiary IDE channel with no tertiary IDE controller present, it will be effectively disabled.

Press the OK button to create the disk image file, or Cancel to close the window.

Adding an existing disk

The Existing… button opens a similar window to the New… button, except that it lets you select an existing disk image file. The CHS parameters are guessed from the image’s file size, or the file header if the image is of a format which contains a header.

After selecting the image file and checking if the parameters are correct, select the Bus and Channel/ID for the hard disk and press OK to add it. Press Cancel to close the window.

Removing a disk

Select a disk on the list and press Remove to remove it.

[image: floppy_and_cdrom_drives] Floppy & CD-ROM drives

The Floppy & CD-ROM drives page contains settings related to the emulated machine’s base removable storage drives.

Floppy drives

Up to four floppy disk drives can be attached to the emulated system, although not all machines provide BIOS support for more than two drives. The following settings apply to the selected drive:

	Type: floppy drive to emulate. Some types have special properties and should only be used in very specific applications:

	5.25” 1.2M PS/2 and 3.5” 1.44M PS/2: IBM PS/2 drives, which invert the polarity of the Density Select pin.

	5.25” 1.2M 300/360 RPM and 3.5” 1.44M 300/360 RPM: “3-mode” drives, which are capable of reading 360K 5.25” or NEC PC-98 3.5” disks if the emulated machine’s BIOS supports 3-mode operation.

	3.5” 1.44M PC-98: NEC PC-98 drive, which is 3-mode and inverts the polarity of the Density Select pin.

	Turbo timings: run the drive mechanism as fast as possible. This decreases access times and makes some incorrectly-dumped floppies readable, but may cause issues with some operating systems and applications.

	Check BPB: if unchecked, PCBox will ignore the DOS BIOS Parameter Block [https://en.wikipedia.org/wiki/BIOS_parameter_block] when determining the physical media format for a floppy image on this drive. See Floppy disk detection for more details.

Note

Disabling “Check BPB” may be required in order to access UNIX/Linux installation floppies or other non-DOS disks, as outlined on Floppy disk detection.

Floppy disk images can be inserted and removed through the status bar or Media menu.

CD-ROM drives

Up to four CD-ROM / DVD-ROM optical disc drives can be attached to the emulated system. The following settings apply to the selected drive:

	Bus: storage bus to attach the drive to. ATAPI (IDE) and SCSI are supported.

	Channel/ID: where to attach the drive on the selected storage bus. See Adding a new disk for more information.

	Speed: maximum transfer speed for the drive. Up to 72x is supported.

CD-ROM / DVD-ROM disc images can be inserted and removed through the status bar or Media menu.

[image: other_removable_devices] Other removable devices

The Other removable devices page contains settings related to the emulated machine’s additional removable storage drives.

MO / ZIP drives

Up to four Magneto-Optical and four Iomega ZIP disk drives can be attached to the emulated system. The following settings apply to the selected drive:

	Bus: storage bus to attach the drive to. ATAPI (IDE) and SCSI are supported.

	Channel/ID: where to attach the drive on the selected storage bus. See Adding a new disk for more information.

	Type (MO only): drive model to identify as. A list of drive models to choose from is provided. Each model supports different types of MO media, while the 86BOX model supports all types.

	ZIP 250 (ZIP only): enable the drive to read and write 250 MB ZIP disks.

MO / ZIP disk images can be inserted and removed through the status bar or Media menu.

[image: other_peripherals] Other peripherals

The Other peripherals page contains settings related to disk drive controllers, memory expansions and other expansion cards.

ISA RTC

Emulate an ISA real-time clock card, for machines without an integrated real-time clock.

The I/O port and/or IRQ used by the selected controller can be configured through the Settings button.

ISA Memory Expansion

Add up to four ISA-based memory expansion cards, for machines which support memory expansion through the ISA bus.

The memory start address and size for each expansion card can be configured through its respective Settings button.

ISABugger

Emulate an ISABugger debugging interface card, equipped with two hexadecimal displays and two LED banks, all controlled by the emulated machine. See ISABugger for documentation on the card’s features.

POST card

Emulate a diagnostic POST card, which displays POST code values issued by the emulated machine’s BIOS on the status bar. See Status bar: POST card for more information.

The POST card will automatically use the correct diagnostic I/O port for the emulated machine:

	Port

	Machine types

	0x10

	IBM PCjr

	0x60

	IBM XT

	0x80

	IBM AT, clones and the XT-based Xi 8088

	0x84

	Early Compaq

	0x190

	IBM PS/1 and PS/2 not based on the Micro Channel Architecture

	0x680

	Micro Channel Architecture

Note

Some operating systems and applications use port 0x80 (which is shared with the POST card on most machines) for other purposes. If you notice the POST code display is flickering and the emulation speed has decreased drastically, try disabling the POST card.

Machine-specific notes

This page contains important notes related to specific machine models emulated by PCBox.

8088

Toshiba T1000

The function keys can be accessed by holding Right Alt or Right Ctrl:

	Right Alt/Ctrl + Num Lock: Show/hide numeric keypad overlay

	Right Alt/Ctrl + Right: Change internal display font

	Right Alt/Ctrl + Home: Use internal display

	Right Alt/Ctrl + End: Use external display

8086

Olivetti M21/24/24SP

The special keys on Olivetti keyboards are mapped as such:

	Page Up: CLEAR

	Page Down: BREAK

	Print Screen: SCR PRT

	Menu: HELP

	Left Windows: 00

	Insert: F13

	Home: F14

	Del: F15

	End: F16

	Right Alt: F17

	Right Win: F18

Olivetti M240

See: Olivetti M21/24/24SP

Toshiba T1200

All function keys from the T1000 are present, plus:

	Right Alt/Ctrl + Page Up: Turbo mode on

	Right Alt/Ctrl + Page Down: Turbo mode off

	Right Alt/Ctrl + Print Screen: Show/hide pop-up window

80286

IBM AT

	The IBM Personal Computer Diagnostics disks are not Y2K-compliant and will produce a 0152 ERROR - SYSTEM BOARD code if time synchronization is enabled. This code can be cleared by disabling time synchronization, then clearing the CMOS by deleting ibmat.nvr from the nvr directory.

Socket 7

ASUS P/I-P65UP5 (C-P55T2D)

	Modular motherboard, consisting of a P/I-P65UP5 baseboard and one of the following CPU cards:

	C-P55T2D: Socket 7 with Intel 430HX northbridge;

	C-P6ND: Socket 8 with Intel 440FX northbridge;

	C-PKND: Slot 1 with Intel 440FX northbridge.

	While the northbridge depends on the selected CPU card, the southbridge always remains the Intel PIIX3, as it is located on the baseboard.

	The real CPU cards support dual CPUs. As PCBox does not emulate multiprocessing, only a single CPU will be present.

	Due to a lack of I/O APIC emulation at the moment, PCBox will patch the MultiProcessor Specification tables out of RAM during boot, so that operating systems will not hang or exhibit other erratic behavior due to the missing I/O APIC.

Socket 8

ASUS P/I-P65UP5 (C-P6ND)

See: ASUS P/I-P65UP5 (C-P55T2D)

Slot 1

ASUS P/I-P65UP5 (C-PKND)

See: ASUS P/I-P65UP5 (C-P55T2D)

A-Trend ATC6310BXII

	Equipped with the obscure SMSC Victory66 southbridge instead of the regular Intel PIIX4E.

	The Victory66 has faster IDE - up to Ultra ATA/66 as opposed to the PIIX4E’s Ultra ATA/33 - and a different USB controller.

	Drivers for Windows 95, 98, Me and 2000 are available here [https://essentials.86box.net/drivers/chipset/SMSC%20SLC90E66%20%28Victory66%29%20%28Windows%209x%20and%202000%29.zip]. Windows XP, Vista and 7 include drivers out of the box.

Slot 2

Gigabyte GA-6GXU

	The BIOS display will corrupt itself during the memory test if the maximum of 2048 MB RAM is selected. This is a visual glitch which does not otherwise negatively impact the machine.

Freeway FW-6400GX

	Hybrid motherboard supporting both Slot 1 and Slot 2 CPUs.

	The maximum amount of RAM is limited to 2032 MB due to a BIOS bug with 2048 MB.

	ACPI is disabled by default. It can be enabled through the ACPI Aware O/S option of the Power Management Setup menu on the BIOS setup.

	Once enabled, ACPI does not work correctly if a non-Intel CPU is selected.

Socket 370

A-Trend ATC7020BXII

See: A-Trend ATC6310BXII

AEWIN AW-O671R

	Equipped with dual Winbond W83977EF Super I/O chips driving four serial (COM1-COM4) and two parallel (LPT1-LPT2) ports.

	The I/O ports and IRQs used by all these ports can be configured in the BIOS setup.

	ACPI is disabled by default, unlike other machines with Award v6.00PG BIOS. It can be enabled through the ACPI function option of the Power Management Setup menu on the BIOS setup.

Miscellaneous

Microsoft Virtual PC 2007

	This machine loads the American Megatrends BIOS from Virtual PC 2007 into PCBox’s emulation. It does not use the virtualization engine or any other components from Virtual PC.

	Virtual PC’s special 8 MB video card, network card, WDM sound card and Guest Additions are not emulated by PCBox.

Footnotes

Broken ACPI

Some machines may have faulty or otherwise incomplete Advanced Configuration and Power Interface [https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface] implementations in their BIOSes, symptoms of which include:

	Windows 2000 and higher will install the “Standard PC” HAL, which does not enable ACPI features such as soft power off and sleep mode;

	Booting an existing Windows installation with the ACPI HAL will result in a STOP 0x000000A5 blue screen;

	Booting Windows Vista or 7 (which require ACPI) will also result in a STOP 0x000000A5 blue screen, or a Windows Boot Manager 0xc0000225 error.

There is no solution to this issue, as none of the currently emulated machines with broken ACPI ever received a BIOS update to fix it.

Disk images

PCBox supports a large variety of disk image formats for the emulated storage drives.

Hard disk images

Supported formats:

	Format

	File extension

	Notes

	Raw image

	Many

	Extensions include: .hdd .ima .img

	Japanese FDI

	.hdi

	

	Extended HDI (HDX)

	.hdx

	

	Virtual Hard Disk

	.vhd

	Fixed, Dynamic and Differencing VHDs are supported through the MiniVHD [https://github.com/shermp/MiniVHD] library.

Hard disk size limits

There are limits to how big of a hard disk an emulated machine can accept. Such limits will vary depending on the machine’s BIOS. The table below lists all important limits applicable to the IDE bus:

	Limit

	Disk size

	Cylinders

	Heads

	Sectors

	20-bit CHS

	504 MB

	1024

	16

	63

	12-bit cylinder

	2015 MB

	4095

	16

	63

	ECHS translation

	4032 MB

	1024

	128

	63

	Revised ECHS

	7560 MB

	1024

	240

	63

	LBA translation

	8064 MB

	1024

	256

	63

	16-bit cylinder

	32255 MB

	65535

	16

	63

	28-bit LBA

	131071 MB

	65536

	16

	256

The maximum supported disk image size for IDE or SCSI is 131071 MB. Disk overlay software such as Ontrack Disk Manager can work around BIOS limits and allow booting of IDE hard drives within the 131071 MB limit, with the same caveats as using such software on a real machine.

Floppy disk images

Supported formats:

	Format

	File extension

	Notes

	Raw image

	Many

	Extensions include: .bin .dsk .flp .hdm .ima .img .vfd .xdf

	86F

	.86f

	Once loaded, any image can be converted to 86F through the status bar or Media menu.

	CopyQM

	.cq / .cqm

	

	DiskDupe

	.ddi

	

	EZ-DisKlone plus

	.fdf

	

	Formatted Disk Image

	.fdi

	Read only.

	HxC MFM

	.mfm

	Read only.

	ImageDisk

	.imd

	

	Japanese FDI

	.fdi

	

	PCjs JSON

	.json

	Read only. PCjs 1.0 format only; 2.0 not supported yet.

	Teledisk

	.td0

	Read only.

Floppy disk detection

PCBox determines the physical media format (sides, tracks per side, sectors per track, bytes per sector) of a floppy disk image through the following methods:

	Image file header data - not applicable for Raw and DiskDupe formats;

	DOS BIOS Parameter Block [https://en.wikipedia.org/wiki/BIOS_parameter_block] data within the image;

	If all else fails, a guess is made based on the image file’s size.

The BIOS Parameter Block detection method may behave incorrectly with non-DOS floppy disks. Installation floppies for UNIX and Linux are common examples of non-DOS disks. Disabling Check BPB is strongly recommended when accessing these, as an inaccurate BPB detection may result in read errors, data corruption and other issues.

Note

When using a Raw image of a non-DOS floppy with Check BPB disabled, make sure the image file is not truncated (smaller than its media size), otherwise incorrect behavior may still occur.

MO / ZIP removable disk images

Supported formats:

	Format

	File extension

	Notes

	Raw image

	Many

	Extensions include: .ima .img

	Japanese FDI

	.mdi / .zdi

	.mdi for MO, .zdi for ZIP.

CD-ROM / DVD-ROM optical disc images

Supported formats:

	Format

	File extension

	Notes

	Cue sheet

	.cue + .bin

	Audio tracks are supported.

	ISO

	.iso

	

CD audio

Compact Disc Digital Audio (CDDA) playback through the emulated CD-ROM drives is supported on Cue sheet images. Audio output is enabled on the first CD-ROM drive and muted on subsequent drives by default; individual drives can be muted or unmuted through the status bar or Media menu.

Note

Only raw format (.bin) tracks are supported. Compressed or otherwise encapsulated audio tracks (.wav, .mp3, .ogg, .flac and other formats) are not supported.

Cassette tape images

Supported formats:

	Format

	File extension

	Notes

	Raw PCM audio

	Many

	Extensions include: .pcm .raw

Audio format must be unsigned 8-bit mono.

	PCE cassette

	.cas

	

	Wave audio

	.wav

	Audio format must be unsigned 8-bit mono.

PCjr cartridge images

Supported formats:

	Format

	File extension

	Notes

	Raw image

	Many

	Extensions include: .a .b .bin

	JRipCart

	.jrc

	

Creating and using disk images

Disk images are a convenient way to transfer files in and out of your machine without the need to configure networking. Perhaps your OS doesn’t support networking or you don’t want to deal with the added complexity of configuring networking on legacy operating systems.

The tooling available varies by host operating system, ranging from command-line tools to full GUI.

Floppy: mtools (Linux, macOS)

The mtools [https://www.gnu.org/software/mtools/] suite is “a collection of utilities to access MS-DOS disks from GNU and Unix without mounting them.” With mtools you can create floppy disk images and copy files to the image. The resulting image can be mounted in PCBox. mtools can be installed via homebrew on macOS and is available in the standard package repositories on linux.

Warning

Never use a tool or utility to write to a disk image that is currently mounted by PCBox. Doing so can lead to unpredictable results, including filesystem corruption.

Creating floppy images

The following command will create a 1.4M (1440K, double-sided, 18 sectors per track, 80 cylinders) floppy image named floppy.img with a label of LABEL:

mformat -f 1440 -v LABEL -C -i floppy.img ::

The -f option specifies the format of the floppy being created. The command can be adjusted for format, label, and image name as needed.

Please see the mtools documentation [https://www.gnu.org/software/mtools/manual/mtools.html#mformat] for more information on the supported formats.

Copying files to floppy images

The following command will copy file1 and file2 to the floppy image floppy.img:

mcopy -i floppy.img file1 file2 ::

Wildcards are also supported with mcopy.

Note

The :: is required to let mtools know there are no more files to copy or arguments to process.

CD-ROM: macOS

macOS can natively mount CD-ROM ISOs, but to create them you’ll need to open up the terminal.

The following command creates an ISO file named cdrom.iso with the volume name CDROM.

hdiutil makehybrid -iso -joliet -joliet-volume-name "CDROM" -o /path/to/cdrom.iso /path/to/cd/root

In the above example the directory /path/to/cd/root becomes the root directory of the ISO image.

If you wanted your current working directory to be the ISO root filesystem you could use the following command:

hdiutil makehybrid -iso -joliet -joliet-volume-name "CDROM" -o ../cdrom.iso .

Note

Make sure the output filename with -o has a path outside of the filesystem root.

CD-ROM: Linux

Linux provides the mkisofs tool in order to easily create ISO images. The following command creates the ISO file cdrom.iso which contains the contents of the directory /path/to/cd/root:

mkisofs -o cdrom.iso /path/to/cd/root

Note

This package is available in the standard distribution repositories, generally under the mkisofs or genisoimage package names.

Disk Image: macOS

macOS can natively mount raw disk images (floppy or hard disk) of types FAT16 and FAT32. Simply double click the file in Finder to mount the image.

For fixed-size vhd files the following command may work depending your your macOS version:

hdiutil attach -imagekey diskimage-class=CRawDiskImage /path/to/your/vhd

Note

As with any image file in macOS, the image can only be mounted if macOS can read the underlying filesystem. macOS can read both FAT16 and FAT32.

Various: Windows

On Windows you can use WinImage to create and manipulate disk images.

Windows will also allow you to directly mount a vhd file in order to copy files. The Disk Management utility allows you to attach a vhd file by selecting Action -> Attach VHD from the menu.

Warning

As above, make sure that two different applications never mount the same image file simultaneously. For example, do not mount a vhd with Windows that is currently mounted by PCBox.

Windows also provides command-line functionality via the diskpart command. The documentation can located here [https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/diskpart].

Tertiary and quaternary IDE

The additional tertiary and quaternary IDE controllers, enabled through the Storage controllers settings page, are not supported by all emulated BIOSes and may require manual configuration of emulated operating systems. The specific details are outlined on this page.

System resources

The following resources are used by these additional controllers:

	Channel

	Main I/O port

	Status I/O port

	IRQ

	Tertiary

	0168h

	036Eh

	10

	Quaternary

	01E8h

	03EEh

	11

Each controller’s IRQ can be configured through its respective Settings button on Tertiary / Quaternary IDE Controller. The Plug and Play option on the IRQ box enables Plug and Play functionality, allowing a PnP compliant operating system to automatically set the controller’s IRQ, while all other options set a static IRQ with no Plug and Play.

Note

	When using a non-Plug and Play IDE controller on an emulated machine which supports Plug and Play, remember to mark the IRQ as being used by a legacy ISA device in the BIOS setup utility.

	Many operating systems do not allow non-Plug and Play IDE controllers to use IRQs outside of the default ones listed on the table above.

BIOS support

The tertiary and quaternary controllers are not visible and not bootable by the BIOS on most machines currently emulated by PCBox, no matter whether or not they are Plug and Play.

Machines with MR BIOS version 3 are the rare exception to this rule, since that BIOS provides full support for non-Plug and Play controllers (as long as the default IRQs for each controller are used), including bootability and INT 13h services.

Operating system support

DOS and real mode

DOS and other real mode operating systems rely on INT 13h services provided by the BIOS to access hard disks. These are only provided for the tertiary and quaternary channels by MR BIOS version 3, as mentioned above.

Windows 95, 98 and Me

The Windows 9x family will automatically detect Plug and Play IDE controllers on boot. Non-Plug and Play controllers will be detected during installation only if the BIOS supports them. Follow these steps to enable a non-Plug and Play controller on an already-installed system:

	Go to the Add New Hardware control panel.

	Add a Standard IDE/ESDI Hard Disk Controller from the Hard disk controllers category.

	Don’t restart the system when asked to.

	Go to the Device Manager tab of the System control panel.

	Select the newly-added Standard IDE/ESDI Hard Disk Controller device from the Hard disk controllers category and click Properties.

	Go to the Resources tab.

	Select Basic configuration 4 in the Settings based on box.

	Change the resource settings to match the I/O ports on the table above and the configured IRQ. The first Input/Output Range range corresponds to the main I/O port, the second one corresponds to the status I/O port, and Interrupt Request corresponds to the IRQ.

	The status I/O port range is off by 6. Select 0368 for the tertiary channel or 03E8 for the quaternary channel.

	The screenshot below shows an example configuration for the tertiary channel.

	If both the tertiary and quaternary channels are enabled, repeat the steps above to enable the other controller.

[image: ../_images/ideterqua_win98.png]

Windows NT, 2000 and XP

Windows 2000 and XP will automatically detect Plug and Play IDE controllers on boot. Additionally, Windows NT 3.5, 4.0, 2000 and XP will automatically detect non-Plug and Play controllers during installation, regardless of BIOS support; however, this auto-detection of non-PnP controllers does not work on most machines with Award BIOS.

Note

If you install the system to a hard disk on one of the additional controllers, it will not be bootable unless the BIOS supports booting from these controllers.

On Windows 2000 only, non-Plug and Play controllers can be enabled on an already-installed system through Add New Hardware similarly to Windows 9x as shown above. The resource parameters cannot be changed, and therefore, only the default IRQs for each controller are supported. Basic configuration 0003 corresponds to the tertiary channel, while Basic configuration 0002 corresponds to the quaternary channel.

Windows Vista and 7

The Windows NT 6 family does not support legacy (ISA or VLB) IDE controllers, and therefore cannot use the additional channels as currently emulated by PCBox.

Linux

There are different steps for enabling additional IDE controllers on Linux, depending on which IDE driver stack is used by your distribution’s kernel.

Modules can be loaded at any time with the modprobe command, or loaded on boot by adding the module’s name (and parameters if required) to a file in /etc/modules-load.d on newer systemd-based distributions, or the /etc/modules file on older distributions.

	libATA (typically kernels 2.6.19 and above):

	Load the pata_isapnp module to enable Plug and Play controllers.

	Load the pata_legacy module with the probe_all=1 parameter to automatically detect and enable non-Plug and Play controllers. Only the default IRQs for each controller are supported.

	Legacy IDE (typically kernels older than 2.6.19):

	Load the ide-pnp module to enable Plug and Play controllers.

	Non-Plug and Play controllers require editing the kernel command line on your bootloader to add each controller’s I/O ports and IRQ:

	Tertiary: ide2=0x168,0x36e,10 (assuming IRQ 10)

	Quaternary: ide3=0x1e8,0x3ee,11 (assuming IRQ 11)

Note

Some distributions may automatically detect additional IDE controllers; however, that is very rarely the case.

Networking

PCBox supports two connection modes for the emulated network cards. The specific details on these connection modes and network emulation as a whole are outlined on this page.

SLiRP

SLiRP creates a private network with a virtual router, allowing the emulated machine to reach the host, its network and the Internet; on the other hand, the host and other devices on its network cannot reach the emulated machine, unless port forwarding is configured. This is similar to the NAT mode on other emulators and virtualizers.

The virtual router provides automatic IP configuration to the emulated machine through DHCP. If that is not an option, use the following static IP settings, replacing x with 2, 3, 4 or 5 for the first, second, third or fourth network card to use SLiRP respectively:

	IP address: 10.0.x.15

	Subnet mask: 255.255.255.0

	Default gateway: 10.0.x.2

	DNS server: 10.0.x.3

The host can be reached through IP address 10.0.x.2, while other devices on the host’s network can be reached through their normal IP addresses.

Note

SLiRP is only capable of routing TCP and UDP traffic. Other protocols such as IPX and NetBEUI can only be used with PCap networking.

PCap

PCap connects directly to one of the host’s network adapters. The emulated machine must be configured as if it were a real machine on your network. This is similar to the Bridge mode on other emulators and virtualizers.

This mode requires Npcap [https://nmap.org/npcap/] (or another WinPcap-compatible driver) to be installed on the host. Only wired Ethernet network connections are compatible; Wi-Fi and other connections will not work at all, as they do not allow PCap to listen for packets bound to the emulated card’s MAC address.

Private PCap network

If you have an incompatible network connection on your host system (such as Wi-Fi), or if you wish to connect the emulated machine to the host without also connecting it to your network, a private network can be created with PCap in one of two ways:

	Install and configure the Microsoft KM-TEST Loopback Adapter included with Windows.

	Guides on how to install this adapter are available online.

	The adapter alone only provides a direct connection to the host, with no DHCP server, therefore requiring manual IP configuration on both the host and the emulated machine.

	Windows’ Internet Connection Sharing feature can be used to connect the emulated machine to the host’s network and the Internet, with DHCP for automatic IP configuration, similarly to SLiRP but with the added benefit that the host can reach the emulated machine without port forwarding.

	Port forwarding can be performed through Internet Connection Sharing’s Settings.

	If VMware is installed, use one of the VMnet adapters included with it.

	VMnet1 (Host-only) connects to the host only.

	VMnet8 (NAT) connects to the host, its network and the Internet.

	Port forwarding can be performed through the Virtual Network Editor’s NAT Settings.

Advanced features

The following advanced features can be accessed by directly editing the emulated machine’s configuration file, which is 86box.cfg by default.

MAC address

With the exception of [LPT] Parallel Port Internet Protocol, every emulated network card stores its MAC address in the mac directive of its respective configuration file section. Only the suffix (last three octets) of the MAC address can be edited; the prefix (first three octets) will always be an Organizationally Unique Identifier [https://en.wikipedia.org/wiki/Organizationally_unique_identifier] belonging to the manufacturer, such as 00:E0:4C for Realtek.

Example: MAC address 00:E0:4C:35:F4:C2 for the Realtek RTL8029AS

[Realtek RTL8029AS]
mac = 35:f4:c2

SLiRP port forwarding

Port forwarding allows the host system and other devices on its network to access TCP and UDP servers running on the emulated machine. This feature is configured through the [SLiRP Port Forwarding #x] section of the configuration file, where x is the number of the emulated network card, in the range of 1 to 4.

Each port forward must be assigned a number, starting at 0 and counting up (skipping a number will result in all subsequent port forwards being ignored), which replaces X on the following directives:

	X_protocol: Port type: tcp or udp (default: tcp)

	X_external: Port number on the host (default: same port number as X_internal)

	X_internal: Port number on the emulated machine (default: same port number as X_external)

The host system can access forwarded ports through 127.0.0.1 or its own IP address, while other devices on the network can access them through the host’s IP address.

Note

The emulated machine’s IP address must be set to 10.0.x.15 (the default IP provided through DHCP) for port forwarding to work.

Example: forward host TCP port 8080 to emulated machine port 80, and host UDP port 5555 to emulated machine port 5555

[SLiRP Port Forwarding #1]
0_external = 8080
0_internal = 80
1_protocol = udp
1_external = 5555

ISABugger

The ISABugger card provides a debugging interface for software developers, consisting of two 8-bit hexadecimal displays and two banks of 8 LEDs, all controlled by the emulated machine. It can be enabled through the Peripherals settings page.

These displays and LEDs are displayed on the status bar as described in the diagram below:

[image: ../_images/isabugger.png]

Background

From src/device/bugger.c:

Implementation of the ISA Bus (de)Bugger expansion card
sold as a DIY kit in the late 1980's in The Netherlands.
This card was a assemble-yourself 8bit ISA addon card for
PC and AT systems that had several tools to aid in low-
level debugging (mostly for faulty BIOSes, bootloaders
and system kernels...)

The standard version had a total of 16 LEDs (8 RED, plus
8 GREEN), two 7-segment displays and one 8-position DIP
switch block on board for use as debugging tools.

The "Plus" version, added an extra 2 7-segment displays,
as well as a very simple RS-232 serial interface that
could be used as a mini-console terminal.

Registers

The ISABugger’s control registers can be accessed through the following operations on I/O ports 0x7a and 0x7b:

	Writing: write the register’s index to port 0x7a, then write the value to port 0x7b.

	Reading: write the register’s index to port 0x7a, then read the value from port 0x7b.

	Index reading: the last register index written to port 0x7a can be read back from the same port. The most significant bit is always set, as an indicator that the ISABugger is enabled.

Note

The ISABugger I/O ports only support byte (inb/outb) operations. Word (inw/outw) and dword (inl/outl) operations will result in undefined behavior; so will selecting or attempting to read back an unknown register index, or performing an illegal operation such as reading from a write-only register.

Register reference

Index 0x00 - Red LEDs (write-only)

Index 0x01 - Green LEDs (write-only)

Each LED bank shows a binary representation of the 8-bit value written to its register, from the most significant bit on the left to the least significant bit on the right. Setting a bit will light up its corresponding LED (displayed as G or R), and clearing a bit will dim its LED (displayed as g or r).

Index 0x02 - Right display (write-only)

Index 0x04 - Left display (write-only)

Each display shows a hexadecimal representation of the 8-bit value written to its register.

Index 0x20 - Serial port data (not implemented) (read/write)

Index 0x40 - Serial port configuration (not implemented) (read/write)

While the aforementioned real ISABugger card is equipped with an independent RS-232 serial interface, that feature is currently not implemented on PCBox in an user-facing manner.

Index 0x80 - Initialize (not implemented) (write-only)

This register has no effect on PCBox, as the emulated ISABugger is always enabled and ready.

Index 0xff - Reset (special)

Writing register index 0xff to port 0x7a will immediately reset all registers to their startup value, clearing all displays and LED banks.

This is a special register which cannot be read or written; writing to port 0x7b immediately after a reset will result in the value being sent to the default register index of 0x00, which corresponds to the red LEDs.

Build guide

PCBox is built using CMake [https://cmake.org/] in combination with other build systems. The build actions are described in CMakeLists.txt files in most directories, which are the translated to the build system of choice by a CMake generator.

The following files are of particular interest:

	./CMakeLists.txt is the top level file, which defines the PCBox project and available configuration options;

	./src/CMakeLists.txt defines the main PCBox executable target

Toolchain files

Toolchain files are contained in the cmake directory. They define compiler flags and the PCBox-specific Release, Debug and Optimized build types.

It is not required to use the included toolchain files, but it is highly recommended to make sure your build is compiled with the same configuration as used by the rest of the team and our userbase.

The currently included files are:

	flags-gcc.cmake contains the generic flags used by GCC-like compilers

	flags-gcc-<arch>.cmake includes flags specific to builds for a given architecture

	llvm-win32-<arch>.cmake defines the build environment for use with LLVM/clang and vcpkg on Windows

Toolchain files are consumed during the initial project generation stage by passing their path in the CMAKE_TOOLCHAIN_FILE variable, e.g.:

$ cmake … -D CMAKE_TOOLCHAIN_FILE=./cmake/flags-gcc-x86_64.cmake

Note

When using vcpkg, which uses its own toolchain file, the PCBox toolchain files must be chainloaded using the VCPKG_CHAINLOAD_TOOLCHAIN_FILE variable.

Presets

The CMakePresets.json file contains several common compilation options for PCBox:

	Build name

	Debug

	New dynarec

	Dev. branch

	Optimized

	regular

	❌

	❌

	❌

	❌

	debug

	✅

	❌

	❌

	❌

	experimental

	✅

	✅

	✅

	❌

	optimized

	❌

	❌

	❌

	✅

The presets are consumed during the initial project generation stage by using the --preset CMake command line option, e.g.:

$ cmake … --preset regular

Note

Presets require CMake 3.21 or newer.

Obtaining the source code

There are multiple ways to obtain the PCBox source code in order to build it:

	Use the git command line. The utility needs to be installed and present in the search path.

$ git clone https://github.com/PCBox/PCBox.git

	Use GitHub Desktop, SourceTree, Git for Windows or other Git frontend on your host.

	Download a ZIP file from GitHub and extract it. (not recommended)

Prerequisites

The build process requires the following tools:

	CMake (>= 3.15)

	pkg-config

Development files for the following libraries are also needed:

	FreeType

	libpng

	RtMidi

	SDL2

	FAudio (optional on Windows)

	Qt5 or Qt6 (optional, can be disabled)

Obtaining the dependencies

MSYS2

$ pacman -Syu $MINGW_PACKAGE_PREFIX-ninja $MINGW_PACKAGE_PREFIX-cmake $MINGW_PACKAGE_PREFIX-gcc $MINGW_PACKAGE_PREFIX-pkg-config $MINGW_PACKAGE_PREFIX-openal $MINGW_PACKAGE_PREFIX-freetype $MINGW_PACKAGE_PREFIX-SDL2 $MINGW_PACKAGE_PREFIX-zlib $MINGW_PACKAGE_PREFIX-libpng $MINGW_PACKAGE_PREFIX-rtmidi $MINGW_PACKAGE_PREFIX-qt5-static $MINGW_PACKAGE_PREFIX-qt5-translations

Note

The command installs the packages only for the currently used MinGW environment, therefore you will need to repeat the procedure for every target you plan to build for.

Ubuntu, Debian

$ sudo apt install build-essential cmake extra-cmake-modules pkg-config ninja-build libfreetype-dev libsdl2-dev libpng-dev libopenal-dev librtmidi-dev libfaudio-dev qtbase5-dev qtbase5-private-dev qttools5-dev libevdev-dev libxkbcommon-dev libxkbcommon-x11-dev

Arch

$ sudo pacman -Sy base-devel cmake extra-cmake-modules pkg-config ninja libfreetype sdl2 libpng lib32-openal rtmidi faudio qt5-base qt5-xcb-private-headers qt5-tools libevdev libxkbcommon libxkbcommon-x11 vulkan-devel

Note

Make sure to enable the multilib repository in your pacman.conf file.

macOS (Homebrew)

$ brew install cmake ninja pkg-config freetype sdl2 libpng openal-soft rtmidi faudio qt@5

Building

Building PCBox can generally be condensed to the following steps:

	Generate the project. This generally involves invoking the following base command line with additional options according to the development environment:

$ cmake -B <build directory> -S <source directory>

Build directory is where the resulting binaries and other build artifacts will be stored. Source directory is the location of the PCBox source code.

Toolchain files and presets are specified at this point by using the respective options.

Other options can be specified using the -D option, e.g. -D NEW_DYNAREC=ON enables the new dynamic recompiler. See CMakeLists.txt in the root of the repository for the full list of available options.

	Build the project itself. This can be done by changing to the chosen build directory and invoking the chosen build system, or you can use the following universal CMake command:

$ cmake --build <build directory>

Appending the -jN option (where N is a number of threads you want to use for the compilation process) will run the build on multiple threads, speeding up the process some.

Note

If you make changes to the CMake build files, running the command will automatically regenerate the project. There is no need to repeat step 1 or to delete the build directory.

	If everything succeeds, you should find the resulting executable in the build directory. Depending on the build system, it might be located in some of its subdirectories.

Tip

The executable can be copied to a consistent location by running the following command:

$ cmake --install <build directory> --prefix <destination>

The emulator file should then be copied into a bin directory in the specified location.

Appending the --strip parameter will also strip debug symbols from the executable in the process.

Advanced builds

The PCBox GitHub Actions page provides all kinds of pre-release testing builds for advanced users. These are linked to the PCBox git repository on GitHub [https://github.com/PCBox/PCBox]; a new build is produced with the latest source code every time the repository is updated. You must be signed into GitHub to see the builds under Artifacts.

Important

Testing builds are development snapshots which may contain bugs, unfinished features or other issues. These should only be used if you know what you’re doing.

Variants

PCBox builds are available in a number of variants. The Jenkins page will automatically detect the recommended variant for the system you’re viewing it on, but if you’re downloading builds for a different system (or you have disabled JavaScript), use the guide below to select a variant:

	The Old Recompiler is recommended. The New Recompiler is in beta; you may experience bugs and performance loss with it.

	The Old Recompiler is not available for the ARM architecture. You must select the New Recompiler for running PCBox on ARM Linux systems such as the Raspberry Pi.

	On Windows, x86 (32-bit) is recommended even if you have a 64-bit system.

	x64 (64-bit) allows for emulating more than 2 GB of RAM on some later machines and using larger soundfonts with FluidSynth, at a slight performance loss.

	On Linux, select the correct architecture for your system, as most distributions lack x64-to-x86 and ARM64-to-ARM32 backwards compatibility by default.

	On macOS, Universal supports both Intel and Apple Silicon Macs.

	The New Recompiler is always used on Apple Silicon due to its ARM architecture, even if the Old Recompiler is selected.

Discontinued variants

These variants are no longer built by Jenkins and can only be compiled from source.

	Debug variants (PCBox-Debug) as of April 2nd 2023.

	These variants were compiled with debug symbols and reduced optimizations to help with running the emulator under gdb or other debuggers. They were eliminated as the setup process for debugging grew closer to just compiling from source instead.

	Dev variants (PCBox-Dev and PCBox-DevODR) as of November 18th 2021.

	These variants contained incomplete and experimental features subject to change at any time, with the -Dev variant also containing the New Recompiler beta.

	Optimized variants (PCBox-Optimized) as of March 18th 2021.

	These variants’ aggressive microarchitecture-specific optimizations provided very little performance improvement (within margin of error on modern CPUs) while introducing bugs and other incorrect behavior.

API

This section documents the internal Application Programming Interface for extending PCBox.

	Devices

	Timers

	Threads

	Port I/O

	DMA

	PCI

Devices

The device is the main unit of emulated components in PCBox. Each device is represented by one or more constant device_t objects, which contain metadata about the device itself, several callbacks and an array of user-facing configuration options. Unless otherwise stated, all structures, functions and constants in this page are provided by 86box/device.h.

device_t

	 Member

	Description

	 name

	The device’s name, displayed in the user interface. "Foo-1234" for example. Suffixes like "(PCI)" are removed at run-time.

	 internal_name

	The device’s internal name, used to identify it in the emulated machine’s configuration file. "foo1234" for example.

	 flags

	One or more bit flags to indicate the expansion bus(es) supported by the device, for determining device availability on the selected machine:

	DEVICE_ISA: 8-bit ISA;

	DEVICE_AT: 16-bit ISA;

	DEVICE_EISA: EISA (reserved for future use);

	DEVICE_VLB: VESA Local Bus or proprietary equivalents;

	DEVICE_PCI: 32-bit PCI;

	DEVICE_AGP: AGP 3.3V;

	DEVICE_AC97: AMR, CNR or ACR;

	DEVICE_PCJR: IBM PCjr;

	DEVICE_PS2: IBM PS/1 or PS/2;

	DEVICE_MCA: IBM Micro Channel Architecture;

	DEVICE_CBUS: PC-98 C-BUS (reserved for future use);

	DEVICE_COM: serial port (reserved for future use);

	DEVICE_LPT: parallel port (reserved for future use).

	 local

	32-bit value which can be read from this structure by the init callback.
Use this value to tell different subtypes of the same device, for example.

	 init

	Function called whenever this device is initialized, either from starting PCBox or from a hard reset. Can be NULL, in which case the opaque pointer passed to other callbacks will be invalid. Takes the form of:

void *init(const struct device_t *info)

	info: pointer to this device_t structure;

	Return value: opaque pointer passed to the other callbacks below, usually a pointer to the device’s state structure.

	 close

	Function called whenever this device is de-initialized, either from closing PCBox or from a hard reset. Can be NULL. Takes the form of:

void close(void *priv)

	priv: opaque pointer previously returned by init.

	 reset

	Function called whenever this device undergoes a soft reset. Can be NULL. Takes the form of:

void reset(void *priv)

	priv: opaque pointer previously returned by init.

	

union

	available

	Function called whenever this device’s availability is being checked. Can be NULL, in which case the device will always be available. Takes the form of:

int available()

	Return value: 1 if the device is available for selection, or 0 if it is unavailable (due to missing ROMs, for example).

	poll

	Function called whenever the mouse position is updated. Valid for mouse devices only. Takes the form of:

int poll(int x, int y, int z, int b, void *priv)

	x and y: relative mouse movement coordinates (signed);

	z: relative scroll wheel movement coordinate (signed);

	b: button state: bit 0 (0x1) set if left button pressed, bit 1 (0x2) set if right button pressed, bit 2 (0x4) set if middle button pressed;

	priv: opaque pointer previously returned by init;

	Return value: 0 if the change was processed, or any other value otherwise.

	register_pci_slot

	Reserved for future use.

	 speed_changed

	Function called whenever the emulated CPU clock speed is changed. Can be NULL. Timer intervals (when using the undocumented legacy timer API) and anything else sensitive to the CPU clock speed should be updated in this callback. Takes the form of:

void speed_changed(void *priv)

	priv: opaque pointer previously returned by init.

	 force_redraw

	Function called whenever the emulated screen has to be fully redrawn. Can be NULL. Only useful for video cards. Takes the form of:

void force_redraw(void *priv)

	priv: opaque pointer previously returned by init.

	 config

	Array of device configuration options, or NULL if no options are available.

State structure

Most devices need a place to store their internal state. We discourage the use of global structures, and instead recommend allocating a state structure dynamically in the init callback and freeing it in the close callback.

Code example: allocating and deallocating a state structure

#include <86box/device.h>

typedef struct {
 uint32_t type; /* example: copied from device_t.local */
 uint8_t regs[256]; /* example: 256*8-bit registers */
} foo_t;

static void *
foo_init(const device_t *info)
{
 /* Allocate the device state structure. */
 foo_t *dev = (foo_t *) malloc(sizeof(foo_t));
 memset(dev, 0, sizeof(foo_t)); /* blank structure */

 /* Do whatever you want. */
 dev->type = info->local; /* copy device_t.local value */

 /* Return a pointer to the state structure. */
 return dev;
}

static void
foo_close(void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Do whatever you want, then deallocate the state structure. */
 free(dev);
}

const device_t foo1234_device = {
 .name = "Foo-1234",
 .internal_name = "foo1234",
 .flags = DEVICE_AT, /* 16-bit ISA */
 .local = 1234,
 .init = foo_init,
 .close = foo_close,
 /* ... */
};

const device_t foo4321_device = {
 .name = "Foo-4321",
 .internal_name = "foo4321",
 .flags = DEVICE_PCI, /* 32-bit PCI */
 .local = 4321, /* different device subtype */
 .init = foo_init,
 .close = foo_close,
 /* ... */
};

Registration

New devices must be registered before they can be selected by the user. This is usually accomplished by adding one or more device_t pointers to the device table for the device’s class:

	Video cards: video_cards in src/video/vid_table.c

	Sound cards: sound_cards in src/sound/sound.c

	Network cards: net_cards in src/network/network.c

	Parallel port devices: lpt_devices in src/lpt.c

	Hard disk controllers: controllers in src/disk/hdc.c

	Floppy disk controllers: fdc_cards in src/floppy/fdc.c

	SCSI controllers: scsi_cards in src/scsi/scsi.c

	ISA RTC cards: boards in src/device/isartc.c

	ISA memory expansion cards: boards in src/device/isamem.c

Devices not covered by any of the above classes may require further integration through modifications to the user interface and configuration loading/saving systems.

Availability

A device will be available for selection by the user if these criteria are met:

	The device is registered, so that the user interface knows about it;

	The selected machine has any of the expansion buses specified in the device’s flags;

	The device’s available callback returns 1 to indicate the device is available (this will always be true if the available callback function is NULL).

The available callback can be used to verify the presence of ROM files if any ROMs are required by the device.

Code example: available checking for the presence of a ROM

#include <86box/device.h>
#include <86box/rom.h>

static int
foo1234_available()
{
 return rom_present("roms/scsi/foo/foo1234.bin");
}

const device_t foo1234_device = {
 /* ... */
 { .available = foo1234_available }, /* must have brackets due to the union */
 /* ... */
};

Configuration

Devices can have any number of user-facing configuration options, usually accessed through the Configure button next to the selection box for the device’s class:

[image: ../../_images/deviceconfig.png]

All option types currently configurable through the user interface.

These options are stored in the emulated machine’s configuration file, in a section identified by the device’s name:

[Foo-1234]
selection = 0
hex16 = 0220
hex20 = D8000
fname = D:/VMs/PCBox/PCBox.exe
binary = 1
spinner = 1234
midi_out = 0
midi_in = 0

Configuration options can be specified in the config member of device_t, as a pointer to a const array of device_config_t objects terminated by an object of type CONFIG_END.

Code example: device configuration options

#include <86box/device.h>

static const device_config_t foo_config[] = {
 { "selection", "Selection", CONFIG_SELECTION, "", 5, "", { 0 },
 {
 { "IRQ 5", 5 },
 { "IRQ 7", 7 },
 { "" }
 }
 },
 { "hex16", "16-bit hex", CONFIG_HEX16, "", 0x220, "", { 0 },
 {
 { "0x220", 0x220 },
 { "0x330", 0x330 },
 { "" }
 }
 },
 { "hex20", "20-bit hex", CONFIG_HEX20, "", 0xd8000, "", { 0 },
 {
 /* While the memory *segment* is displayed to the user, we store the
 linear (segment << 4) base address in the configuration file. */
 { "D800h", 0xd8000 },
 { "DC00h", 0xdc000 },
 { "" }
 }
 },
 { "string", "String", CONFIG_STRING, "Default" },
 { "fname", "Filename", CONFIG_FNAME, "", 0, "File type (*.foo)|*.foo|Another file type (*.bar)|*.bar" },
 { "binary", "Binary", CONFIG_BINARY, "", 1 /* checked by default */ },
 { "int", "Integer", CONFIG_INT, "", 1234 },
 { "spinner", "Spinner", CONFIG_SPINNER, "", 1234, "", { 1204, 1294, 10 } },
 { "mac", "MAC address", CONFIG_MAC, "", 0 },
 { "midi_out", "MIDI output", CONFIG_MIDI_OUT, "", 0 },
 { "midi_in", "MIDI input", CONFIG_MIDI_IN, "", 0 },
 { "", "", CONFIG_END }
};

const device_t foo_device = {
 /* ... */
 .config = foo_config
};

device_config_t

	Member

	Description

	name

	Internal name for this option, used to identify it in the emulated machine’s configuration file.

	description

	Description for this option, displayed in the user interface.

	type

	One of the following option types:

	CONFIG_SELECTION: combobox containing a list of values specified by the selection member;

	CONFIG_HEX16: combobox containing a list of 16-bit hexadecimal values (useful for ISA I/O ports) specified by the selection member;

	CONFIG_HEX20: combobox containing a list of 20-bit hexadecimal values (useful for ISA memory addresses) specified by the selection member;

	CONFIG_STRING: arbitrary text string entered by the user, currently not visible nor configurable in the user interface;

	CONFIG_FNAME: arbitrary file path entered by the user directly or through a file selector button;

	CONFIG_BINARY: checkbox;

	CONFIG_INT: arbitrary integer number, currently not visible nor configurable in the user interface;

	CONFIG_SPINNER: arbitrary integer number entered by the user directly or through up/down arrows, within a range specified by the spinner member;

	CONFIG_MAC: last 3 octets of a MAC address, currently not visible nor configurable in the user interface;

	CONFIG_MIDI_OUT: combobox containing a list of system MIDI output devices;

	CONFIG_MIDI_IN: combobox containing a list of system MIDI input devices;

	CONFIG_END: mandatory terminator to indicate the end of the option list.

	default_string

	Default string value for a CONFIG_STRING option. Can be "" if not applicable.

	default_int

	Default integer value for a CONFIG_HEX16, CONFIG_HEX20, CONFIG_BINARY, CONFIG_INT or CONFIG_SPINNER option. Can be 0 if not applicable.

	file_filter

	File type filter for a CONFIG_FNAME option. Can be "" if not applicable. Must be specified in Windows description|mask|description|mask... format, for example:

"Raw image (*.img)|*.img|Virtual Hard Disk (*.vhd)|*.vhd"

	spinner

	device_config_spinner_t sub-structure containing the minimum/maximum/step values for a CONFIG_SPINNER option. Can be { 0 } if not applicable.

	Member

	Description

	min

	Minimum selectable value.

	max

	Maximum selectable value.

	step

	Units to be incremented/decremented with the arrow buttons. Note that the user can still type in arbitrary numbers that are within min and max but not aligned to step.

	selection

	Array of device_config_selection_t sub-structures containing the choices for a CONFIG_SELECTION, CONFIG_HEX16 or CONFIG_HEX20 option. Can be { 0 } if not applicable. Must be terminated with an object with a description of "".

	Member

	Description

	description

	Description for this choice, displayed in the user interface.

	value

	Integer value corresponding to this choice, used to identify it in the emulated machine’s configuration file.

Configured option values can be read from within the device’s init callback with the device_get_config_* functions. These functions automatically operate in the context of the device currently being initialized.

Note

device_get_config_* functions should never be called outside of a device’s init callback. You are responsible for reading the options’ configured values in the init callback and storing them in the device’s state structure if necessary.

device_get_config_string

	Parameter

	Description

	name

	The option’s name. Accepted option types are CONFIG_STRING and CONFIG_FNAME.

	Return value

	The option’s configured string value, or its default_string if no value is present. Note that a const char * is returned.

device_get_config_int / device_get_config_hex16 / device_get_config_hex20

	Parameter

	Description

	name

	The option’s name. Accepted option types are:

	device_get_config_int: CONFIG_SELECTION, CONFIG_BINARY, CONFIG_INT, CONFIG_SPINNER, CONFIG_MIDI_OUT, CONFIG_MIDI_IN

	device_get_config_hex16: CONFIG_HEX16

	device_get_config_hex20: CONFIG_HEX20

	Return value

	The option’s configured integer value (CONFIG_BINARY returns 1 if checked or 0 otherwise), or its default_int if no value is present.

device_get_config_int_ex / device_get_config_mac

	Parameter

	Description

	name

	The option’s name. Accepted option types are:

	device_get_config_int_ex: CONFIG_SELECTION, CONFIG_BINARY, CONFIG_INT, CONFIG_SPINNER, CONFIG_MIDI_OUT, CONFIG_MIDI_IN

	device_get_config_mac: CONFIG_MAC

	dflt_int

	The default value to return if no configured value is present.

	Return value

	The option’s configured integer value (CONFIG_BINARY returns 1 if checked or 0 otherwise), or dflt_int if no value is present.

Timers

Timers allow devices to perform tasks after a set period. This period is automatically scaled to match the emulation speed, which helps PCBox stay relatively accurate, unlike other emulators and virtualizers which may operate timers in real time independently of speed. Unless otherwise stated, all structures, functions and constants in this page are provided by 86box/timer.h.

Note

Timers are processed after each CPU instruction in interpreter mode, or each recompiled code block in dynamic recompiler mode (unless an instruction requests a Time Stamp Counter (TSC) update). In both cases, timer accuracy should be in the single-digit microsecond range at a minimum, which is good enough for most time-sensitive applications like 48 KHz audio.

Adding

Timers can be added with the timer_add function. The best place for adding a timer is in a device’s init callback, storing the pc_timer_t object in the state structure.

Code example: adding a timer

#include <86box/device.h>
#include <86box/timer.h>

typedef struct {
 pc_timer_t countdown_timer;
} foo_t;

/* Called once the timer period is reached. */
static void
foo_countdown_timer(void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Do whatever you want. */
}

static void *
foo_init(const device_t *info)
{
 /* Allocate the device state structure. */
 foo_t *dev = /* ... */

 /* Add timer. */
 timer_add(&dev->countdown_timer, foo_countdown_timer, foo, 0);
}

const foo1234_device = {
 /* ... */
 .init = foo_init,
 /* ... */
};

timer_add

	Parameter

	Description

	timer

	Pointer to a pc_timer_t object stored somewhere, usually in a device’s state structure.

	callback

	Function called every time the timer’s period is reached. Takes the form of:

void callback(void *priv)

	priv: opaque pointer (see priv below).

	priv

	Opaque pointer passed to the callback above.
Usually a pointer to a device’s state structure.

	start_timer

	Part of the legacy API, should always be 0.

Triggering

The timer_on_auto function can be used to start (with the provided microsecond period) or stop a timer. It can also be called from a timer callback to restart the timer:

Code example: starting, restarting and stopping a timer

#include <86box/timer.h>

typedef struct {
 uint8_t regs[256];
 pc_timer_t countdown_timer; /* don't forget to timer_add on init, per the example above */
} foo_t;

static void
foo_countdown_timer(void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Restart timer automatically if the relevant
 bit (see register description below) is set. */
 if (dev->regs[0x80] & 0x02)
 timer_on_auto(&dev->countdown_timer, 100.0);
}

/* Our device handles I/O port register 0x__80 like this:
 - Bit 0 (0x01) set: start 100-microsecond countdown timer;
 - Bit 0 (0x01) clear: stop countdown timer;
 - Bit 1 (0x02) set: automatically restart timer. */
static void
foo_outb(uint16_t addr, uint8_t val, void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Handle writes to register 0x80. */
 if ((addr & 0xff) == 0x80) {
 dev->regs[0x80] = val;
 if (val & 0x01) /* bit 0 set */
 timer_on_auto(&dev->countdown_timer, 100.0);
 else /* bit 0 clear */
 timer_on_auto(&dev->countdown_timer, 0.0);
 }
}

timer_on_auto

	Parameter

	Description

	timer

	Pointer to the timer’s pc_timer_t object.

	period

	Period after which the timer callback is called, in microseconds (1/1,000,000th of a second or 1/1,000th of a millisecond) as a double.
A period of 0.0 stops the timer if it’s active.

Legacy API

Existing devices may use the timer_set_delay_u64 and timer_advance_u64 functions, which are considered legacy and will not be documented here for simplicity. These functions used an internal 64-bit period unit, which had to be obtained by multiplying the microsecond value by the TIMER_USEC constant, and updated by the device’s speed_changed callback. The new timer_on_auto function is much simpler, requiring no constant multiplication or updates.

Threads

Compute-intensive tasks can be offloaded from the main emulation flow with threads. Unless otherwise stated, all structures, functions and constants in this page are provided by 86box/plat.h.

Warning

PCBox API functions (excluding those in this page) are generally not thread-safe and must be called from the main emulation thread. Thread-unsafe actions (like raising an interrupt) can be performed by the callback of a free-running timer which looks for data written to the device’s state structure by a thread, as timers run on the main emulation thread.

Note

The contents of thread_t and other structures used by thread_* functions are platform-specific; therefore, pointers to those structures should be treated as opaque pointers.

Starting

Threads can be started with the thread_create function. Additionally, the thread_wait function can be used to wait for a thread’s function to return.

thread_create

	Parameter

	Description

	thread_func

	Function to run in the thread. Takes the form of:

void thread_func(void *priv)

	priv: opaque pointer (see priv below).

	priv

	Opaque pointer passed to the thread_func above.
Usually a pointer to a device’s state structure.

	Return value

	thread_t pointer representing the newly-created thread.
That pointer will become invalid once the thread’s function returns.

thread_wait

	Parameter

	Description

	arg

	thread_t pointer representing the thread to wait for.

	Return value

	
	0 on success;

	Any other value on failure.

Events

Events allow for synchronization between threads. An event, represented by an event_t pointer returned by the thread_create_event function, can be set (thread_set_event function) or reset (thread_reset_event function), and a thread can wait for an event to be set with the thread_wait_event function. Events that are no longer to be used should be deallocated with the thread_destroy_event function.

thread_create_event

	Parameter

	Description

	Return value

	event_t pointer representing the newly-created event.

thread_set_event / thread_reset_event / thread_destroy_event

	Parameter

	Description

	arg

	event_t pointer representing the event to set (thread_set_event), reset (thread_reset_event) or deallocate (thread_destroy_event).

thread_wait_event

	Parameter

	Description

	arg

	event_t pointer representing the event to wait for.

	timeout

	Maximum amount of time in milliseconds (not microseconds, unlike timers) to spend waiting for this event to be set. If set to -1, this function will not return until the event is set.

	Return value

	
	0 on success;

	Any other value if timeout was reached or the wait otherwise failed.

Note

A thread_wait_event call does not reset the event once it is set; the event must be reset manually with thread_reset_event. thread_wait_event returns immediately if the event is already set.

Mutexes

Mutexes [https://en.wikipedia.org/wiki/Mutual_exclusion], also known as locks, can control access to a shared resource, ensuring no concurrent modifications or other issues arise from multiple threads attempting to use the same resource at the same time. A mutex, represented by a mutex_t pointer returned by the thread_create_mutex function, can be locked with the thread_wait_mutex function (which waits until the mutex is released) and released with the thread_release_mutex function. Additionally, the status of a mutex can be independently checked with the thread_test_mutex function. Mutexes that are no longer to be used should be deallocated with the thread_close_mutex function.

thread_create_mutex

	Parameter

	Description

	Return value

	mutex_t pointer representing the newly-created mutex.

thread_wait_mutex / thread_release_mutex / thread_close_mutex

	Parameter

	Description

	arg

	mutex_t pointer representing the mutex to lock (thread_wait_mutex), release (thread_release_mutex) or deallocate (thread_close_mutex).
If this mutex is locked, thread_wait_mutex will not return until the mutex is released by another thread.

thread_test_mutex

	Parameter

	Description

	arg

	mutex_t pointer representing the mutex to check.

	Return value

	
	0 if this mutex is locked;

	Any other value if the mutex is released.

Port I/O

PCBox handles the x86 port I/O space through I/O handlers. These handlers can be added with the io_sethandler function and removed with the io_removehandler function, both provided by 86box/io.h.

io_sethandler / io_removehandler

	Parameter

	Description

	base

	First I/O port (0x0000-0xffff) covered by this handler.

	size

	Amount of I/O ports (1-65536) covered by this handler, starting at base.

	inb

	 I/O read operation callback functions. Can be NULL. Each callback takes the form of:

TYPE callback(uint16_t addr, void *priv)

	TYPE: operation width: uint8_t for inb, uint16_t for inw, uint32_t for inl;

	addr: exact I/O port being read;

	priv: opaque pointer (see priv below);

	Return value: 8- (inb), 16- (inw) or 32-bit (inl) value read from this port.

	inw

	inl

	outb

	 I/O write operation callback functions. Can be NULL. Each callback takes the form of:

void callback(uint16_t addr, TYPE val, void *priv)

	addr: exact I/O port being written;

	TYPE: operation width: uint8_t for outb, uint16_t for outw, uint32_t for outl;

	val: 8- (outb), 16- (outw) or 32-bit (outl) value being written to this port;

	priv: opaque pointer (see priv below).

	outw

	outl

	priv

	Opaque pointer passed to this handler’s read/write operation callbacks.
Usually a pointer to a device’s state structure.

I/O handlers can be added or removed at any time, although io_removehandler must be called with the exact same parameters that io_sethandler was originally called with. For non-Plug and Play devices, you might want to add handlers in the init callback; for ISA Plug and Play devices, you’d add and/or remove handlers on the config_changed callback; for PCI devices, you’d do the same whenever the Command register or Base Address (BAR) registers are written to; and so on.

Note

There is no need to call io_removehandler on the device’s close callback, since a hard reset already removes all I/O handlers.

Callback fallbacks

When an I/O handler receives an operation with a width for which it has no callback, the operation will automatically fall back to a lower width for which there is a callback. For example, if an inl operation falls on a handler which has no inl callback, PCBox will break the operation down to inw or inb callbacks on successive port numbers, then combine their return values:

	inl callback present:

uint32_t val = inl(port);

	inl callback not present, but inw callback present:

uint32_t val = inw(port);
val |= (inw(port + 2) << 16);

	inl and inw callbacks not present, but inb callback present:

uint32_t val = inb(port);
val |= (inb(port + 1) << 8);
val |= (inb(port + 2) << 16);
val |= (inb(port + 3) << 24);

	inl, inw and inb callbacks not present:

uint32_t val = 0xffffffff; /* don't care */

The same rule applies to write callbacks:

	outl callback present:

uint32_t val = /* ... */;
outl(port, val);

	outl callback not present, but outw callback present:

uint32_t val = /* ... */;
outw(port, val & 0xffff);
outw(port + 2, (val >> 16) & 0xffff);

	outl and outw callbacks not present, but outb callback present:

uint32_t val = /* ... */;
outb(port, val & 0xff);
outb(port + 1, (val >> 8) & 0xff);
outb(port + 2, (val >> 16) & 0xff);
outb(port + 3, (val >> 24) & 0xff);

	outl, outw and outb callbacks not present:

Don’t care, no operation performed.

Note

Each broken-down operation triggers the I/O handlers for its respective port number, no matter which handlers are responsible for the starting port number. A handler will never receive callbacks for ports outside its base and size boundaries.

This feature’s main use cases are devices which store registers that are 8-bit wide but may be accessed with 16- or 32-bit operations:

Code example: inb handler for reading 8-bit registers

typedef struct {
 uint8_t regs[256];
} foo_t;

static uint8_t
foo_io_inb(uint16_t addr, void *priv)
{
 foo_t *dev = (foo_t *) priv;
 return dev->regs[addr & 0xff]; /* register index = I/O port's least significant byte */
}

/* No foo_io_inw, so a 16-bit read will read two 8-bit registers in succession.
 No foo_io_inl, so a 32-bit read will read four 8-bit registers in succession. */

Multiple I/O handlers

Any given I/O port can have an unlimited amount of I/O handlers, such that:

	when a read operation occurs, all read callbacks will be called, and their return values will be logically ANDed together;

	when a write operation occurs, all write callbacks will be called with the same written value.

Read callbacks can effectively return “don’t care” (without interfering with other handlers) by returning a value with all bits set: 0xff for inb, 0xffff for inw or 0xffffffff for inl.

Note

The same callback fallback rules specified above also apply with multiple handlers. Handlers without callbacks for the operation’s type and (same or lower) width are automatically skipped.

I/O traps

A second type of I/O handler, I/O traps allow a device (usually System Management Mode on chipsets or legacy compatibility mechanisms on PCI sound cards) to act upon a read/write operation to an I/O port operation without affecting its result.

Code example: I/O trap on ports 0x220-0x22f

typedef struct {
 void *trap_220;
} foo_t;

static void
foo_trap_220(int size, uint16_t addr, uint8_t write, uint8_t val, void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Do whatever you want. */
 pclog("Foo: Trapped I/O %s to port %04X, size %d\n",
 write ? "write" : "read", addr, size);
 if (write)
 pclog("Foo: Written value: %02X\n", val);
}

static void *
foo_init(const device_t *info)
{
 /* Allocate the device state structure. */
 foo_t *dev = /* ... */

 /* Add I/O trap. */
 dev->trap_220 = io_trap_add(foo_trap_220, dev);

 /* Map I/O trap to 16 ports starting at 0x220. */
 io_trap_remap(dev->trap_220, 1, 0x220, 16);

 return dev;
}

static void
foo_close(void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Remove I/O trap before deallocating the device state structure. */
 io_trap_remove(dev->trap_220);
 free(dev);
}

const device_t foo4321_device = {
 /* ... */
 .init = foo_init,
 .close = foo_close,
 /* ... */
};

io_trap_add

	Parameter

	Description

	func

	Function called whenever an I/O operation of any type or size is performed to the trap’s I/O address range. Takes the form of:

void func(int size, uint16_t addr, uint8_t write, uint8_t val, void *priv)

	size: I/O operation width: 1, 2 or 4;

	addr: I/O address the operation is being performed on;

	write: 0 if this operation is a read, or 1 if it’s a write;

	val: value being written if this operation is a write;

	priv: opaque pointer (see priv below).

	priv

	Opaque pointer passed to the func callback above.
Usually a pointer to a device’s state structure.

	Return value

	Opaque (void) pointer representing the newly-created I/O trap.

io_trap_remap

	Parameter

	Description

	trap

	Opaque pointer representing the I/O trap to remap.

	enable

	
	1 to enable this trap;

	0 to disable it.

	addr

	First I/O port (0x0000-0xffff) covered by this trap.

	size

	Amount of I/O ports (1-65536) covered by this trap.

DMA

PCBox offers two mechanisms for Direct Memory Access: 8237 DMA for ISA devices and direct memory read/write for PCI devices.

8237 DMA

86box/dma.h provides the dma_channel_read and dma_channel_write functions to read or write (respectively) a value from or to an 8237 DMA channel.

dma_channel_read

	Parameter

	Description

	channel

	DMA channel number: 0-3 for 8-bit channels or 5-7 for 16-bit channels.

	Return value

	8- (channels 0-3) or 16-bit (channels 5-7) value read from the given DMA channel, or DMA_NODATA if no data was read.

May include a DMA_OVER bit flag (located above the most significant data bit so as to not interfere with the data) indicating that this was the last byte or word transferred, after which the channel is auto-initialized or masked depending on its configuration.

dma_channel_write

	Parameter

	Description

	channel

	DMA channel number: 0-3 for 8-bit channels or 5-7 for 16-bit channels.

	val

	8- (channels 0-3) or 16-bit (channels 5-7) value to write to the given DMA channel.

	Return value

	
	0 on success;

	DMA_NODATA if no data was actually written;

	DMA_OVER if this was the last byte or word transferred, after which the channel is auto-initialized or masked depending on its configuration.

Direct memory read/write

86box/mem.h provides the mem_read*_phys and mem_write*_phys functions, which read or write physical memory directly. These are useful for PCI devices, which perform DMA on their own.

mem_readb_phys / mem_readw_phys / mem_readl_phys

	Parameter

	Description

	addr

	32-bit memory address to read.

	Return value

	8- (mem_readb_phys), 16- (mem_readw_phys) or 32-bit (mem_readl_phys) value read from the given memory address.

mem_writeb_phys / mem_writew_phys / mem_writel_phys

	Parameter

	Description

	addr

	32-bit memory address to write.

	val

	8- (mem_readb_phys), 16- (mem_readw_phys) or 32-bit (mem_readl_phys) value to write to the given memory address.

PCI

PCI devices are more complex than ISA devices; they are individually addressable through a device number, and contain a configuration space for configuring several aspects of the device.

Adding a device

PCI devices can be added with the pci_add_card function in the device’s init callback. A PCI slot is automatically selected for the device according to the add_type; if the emulated machine runs out of slots, a DEC 21150 PCI-PCI bridge is automatically deployed to add 9 more slots, and new devices are placed in the secondary PCI bus under it.

Code example: adding a PCI device

#include <86box/device.h>
#include <86box/pci.h>

typedef struct {
 int slot;
 uint8_t pci_regs[256]; /* 256*8-bit configuration register array */
} foo_t;

static uint8_t
foo_pci_read(int func, int addr, void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Ignore unknown functions. */
 if (func > 0)
 return 0xff;

 /* Read configuration space register. */
 return dev->pci_regs[addr];
}

static void
foo_pci_write(int func, int addr, uint8_t val, void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Ignore unknown functions. */
 if (func > 0)
 return;

 /* Write configuration space register. */
 dev->pci_regs[addr] = val;
}

static void *
foo_init(const device_t *info)
{
 /* Allocate the device state structure. */
 foo_t *dev = /* ... */

 /* Add PCI device. */
 dev->slot = pci_add_card(PCI_ADD_NORMAL, foo_pci_read, foo_pci_write, dev);

 return dev;
}

const device_t foo4321_device = {
 .name = "Foo-4321",
 .internal_name = "foo4321",
 .flags = DEVICE_PCI,
 .local = 4321,
 .init = foo_init,
 /* ... */
};

pci_add_card

	Parameter

	Description

	add_type

	PCI slot type to add this card to.

	read

	Configuration space register read callback. Takes the form of:

uint8_t read(int func, int addr, void *priv)

	func: PCI function number;

	addr: configuration space register index being read;

	priv: opaque pointer (see priv below);

	Return value: 8-bit value read from this register index.

	write

	Configuration space register write callback. Takes the form of:

void write(int func, int addr, uint8_t val, void *priv)

	func: PCI function number;

	addr: configuration space register index being written;

	val: 8-bit value being written from this register index.

	priv: opaque pointer (see priv below);

	priv

	Opaque pointer passed to this device’s configuration space register read/write callbacks.
Usually a pointer to a device’s state structure.

	Return value

	int value (subject to change in the future) representing the newly-added device.

Slot types

A machine may declare special PCI slots for specific purposes, such as on-board PCI devices which don’t correspond to a physical slot. The add_type parameter to pci_add_card determines which kind of slot the device should be placed in:

	PCI_ADD_NORMAL: normal 32-bit PCI slot;

	PCI_ADD_AGP: AGP slot (AGP is a superset of PCI);

	PCI_ADD_VIDEO: on-board video controller;

	PCI_ADD_SCSI: on-board SCSI controller;

	PCI_ADD_SOUND: on-board sound controller;

	PCI_ADD_IDE: on-board IDE controller;

	PCI_ADD_NETWORK: on-board network controller;

	PCI_ADD_NORTHBRIDGE, PCI_ADD_AGPBRIDGE, PCI_ADD_SOUTHBRIDGE: reserved for the chipset.

A device available both as a discrete card and as an on-board device should have different device_t objects with unique local values to set both variants apart.

Code example: device available as both discrete and on-board

#include <86box/device.h>
#include <86box/pci.h>

#define FOO_ONBOARD 0x80000000 /* most significant bit set = on-board */

typedef struct {
 int slot;
} foo_t;

static void *
foo_init(const device_t *info)
{
 /* Allocate the device state structure. */
 foo_t *dev = /* ... */

 /* Add PCI device. The normal variant goes in any normal slot,
 and the on-board variant goes in the on-board SCSI "slot". */
 dev->slot = pci_add_card((info->local & FOO_ONBOARD) ? PCI_ADD_SCSI : PCI_ADD_NORMAL,
 foo_pci_read, foo_pci_write, dev);

 return dev;
}

const device_t foo4321_device = {
 .name = "Foo-4321",
 .internal_name = "foo4321",
 .flags = DEVICE_PCI,
 .local = 4321, /* on-board bit not set */
 .init = foo_init,
 /* ... */
};

const device_t foo4321_onboard_device = {
 .name = "Foo-4321 (On-Board)",
 .internal_name = "foo4321_onboard",
 .flags = DEVICE_PCI,
 .local = 4321 | FOO_ONBOARD, /* on-board bit set */
 .init = foo_init,
 /* ... */
};

Configuration space

The PCI configuration space is split into a standard register set [https://wiki.osdev.org/PCI#PCI_Device_Structure] from 0x00 through 0x3f, and device-specific registers from 0x40 through 0xff. Not all standard registers are present or writable (partially or fully) on all devices; consult the documentation for the device you’re trying to implement to determine which registers and bits are present or writable.

Note

The documentation for some devices may treat configuration space registers as 16- or 32-bit-wide. Since PCBox works with 8-bit-wide registers, make sure to translate all wider register offsets and bit numbers into individual bytes (in little endian / least significant byte first).

Important

Aside from the configuration space, devices will very often have a different set of registers in I/O or memory space; from now on, “registers” will refer to configuration space registers.

The most important registers in the standard set are:

	Offsets

	Register

	Description

	0x00 - 0x01

	Vendor ID

	 Unique IDs assigned to the device’s vendor (2 bytes) and the device itself (2 more bytes). The PCI ID Repository [https://pci-ids.ucw.cz] is a comprehensive repository of many (but not all) known PCI IDs.

	0x02 - 0x03

	Device ID

	0x04 - 0x05

	Command

	Control several core aspects of the PCI device:

	I/O Space (bit 0 or 0x0001) should enable all I/O base address registers if set, or disable them if cleared;

	Memory Space (bit 1 or 0x0002) should enable all memory base address registers if set, or disable them if cleared;

	Interrupt Disable (bit 10 or 0x0400) should prevent the device from triggering interrupts if set.

	0x0e

	Header type

	Usually 0 to indicate a normal PCI header.
Bit 7 (0x80) must be set if this is the first function (function 0) of a multi-function device.

	0x10 - 0x27

	Base Address Registers

	Sets the base address for each memory or I/O range provided by this device.

	0x2c - 0x2d

	Subvendor ID

	 Unique vendor (2 bytes) and device (2 bytes) IDs sometimes assigned to different implementations of the same PCI device without having to change the main Vendor and Device IDs.
Usually all 0 if the device doesn’t call for such IDs.

	0x2e - 0x2f

	Subsystem ID

	0x30 - 0x33

	Expansion ROM

	Base address and enable bit for the device’s option ROM.
Must be read-only if the device does not provide an option ROM.

	0x3c

	Interrupt Line

	The PIC IRQ number assigned to this device’s interrupt pin (see Interrupt Pin below).
While this register’s contents should not be used by the device, the register itself must be writable if the device uses interrupts.

	0x3d

	Interrupt Pin

	Read-only value indicating the PCI interrupt pin (INTx#) used by this device:

	0 if the device does not use interrupts;

	PCI_INTA to indicate the INTA# pin is used (most devices use this);

	PCI_INTB to indicate the INTB# pin is used;

	PCI_INTC to indicate the INTC# pin is used;

	PCI_INTD to indicate the INTD# pin is used.

Multi-function devices

PCI defines the concept of functions, which allow a physical device to contain up to 8 sub-devices (numbered from 0 to 7), each with their own configuration space, and their own resources controlled by Base Address Registers. Most (but not all) multi-function PCI devices are chipset southbridges, which may implement a function for the PCI-ISA bridge (and general configuration), another one for the IDE controller, one or more for USB and so on.

The func parameter passed to a device’s configuration space read/write callbacks provides the function number for which the configuration space is being accessed. There are two main requirements for implementing multi-function devices:

	The first function (function 0) must have bit 7 (0x80) of the Header Type (0x0e) register set;

	Unused functions must return 0xff on all configuration register reads and should ignore writes.

Code example: device with two functions

typedef struct {
 int slot;
 uint8_t pci_regs[2][256]; /* two 256*8-bit configuration register arrays,
 one for each function */
} foo_t;

static uint8_t
foo_pci_read(int func, int addr, void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Read configuration space register on the given function. */
 switch (func) {
 case 0: /* function 0 */
 return dev->pci_regs[0][addr];

 case 1: /* function 1 */
 return dev->pci_regs[1][addr];

 default: /* out of range */
 return 0xff;
 }
}

static void
foo_pci_write(int func, int addr, uint8_t val, void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Write configuration space register on the given function. */
 switch (func) {
 case 0: /* function 0 */
 dev->pci_regs[0][addr] = val;
 break;

 case 1: /* function 1 */
 dev->pci_regs[1][addr] = val;
 break;

 default: /* out of range */
 break;
 }
}

static void
foo_reset(void *priv)
{
 /* Get the device state structure. */
 foo_t *dev = (foo_t *) priv;

 /* Reset PCI configuration registers. */
 memset(dev->pci_regs[0], 0, sizeof(dev->pci_regs[0]));
 memset(dev->pci_regs[1], 0, sizeof(dev->pci_regs[1]));

 /* Write default vendor IDs, device IDs, etc. */

 /* Flag this device as multi-function. */
 dev->pci_regs[0][0x0e] = 0x80;
}

static void *
foo_init(const device_t *info)
{
 /* Allocate the device state structure. */
 foo_t *dev = /* ... */

 /* Add PCI device. No changes are required here for multi-function devices. */
 dev->slot = pci_add_card(PCI_ADD_NORMAL, foo_pci_read, foo_pci_write, dev);

 /* Initialize PCI configuration registers. */
 foo_reset(dev);

 return dev;
}

const device_t foo4321_device = {
 /* ... */
 .init = foo_init,
 .reset = foo_reset,
 /* ... */
};

Base Address Registers

Each function may contain up to six Base Address Registers (BARs), which determine the base and size of a memory or I/O resource provided by the device. The base address may be set by the BIOS and/or operating system during boot. Each 4-byte BAR has two parts:

	The most significant bits store the resource’s base address, aligned to its size;

	The least significant bits are read-only flags related to the BAR:

	Bit 0 is the resource type: 0 for memory or 1 for I/O;

	Bits 1-3 on memory BARs are positioning flags not really relevant to the context of PCBox;

	Bit 1 on I/O BARs is reserved and must be 0.

The aforementioned base address alignment allows software (BIOSes and operating systems) to tell how big a BAR resource is, by checking how many base address bits are writable. All bits ranging from the end of the flags to the start of the base address must be read-only and always read 0; for example, on a memory BAR that is 4 KB (4096 bytes) large, bits 31-12 must be writable (creating a 4096-byte alignment), bits 11-4 must read 0, and bits 3-0 must read the BAR flags.

Note

The minimum BAR sizes are 4 KB for memory and 4 ports for I/O. While memory BARs can technically be as small as 16 bytes, PCBox can only handle device memory in aligned 4 KB increments.

Memory BAR (example: 4 KB large, starting at 0x10)

	Byte

	 0x13

	 0x12

	 0x11

	 0x10

	Bit

	31

	30

	29

	28

	27

	26

	25

	24

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Value

	 Base memory address (4096-byte aligned)

	 Always 0

	

Flags

 File formats

File formats

PCBox introduces new file formats for disk images and other purposes. These formats are documented on this section.

Formats

	86F

	Extended HDI (HDX)

 86F

86F

A floppy disk surface image format which stores data in FM- or MFM-encoded transitions.

Preliminary specification for v2.20

All offsets are in hexadecimal. This specification is subject to change before its final release.

00000000: Magic 4 bytes ("86BF")
00000004: Minor version (0x14)
00000005: Major version (0x02)
00000006: Disk flags (16-bit)
 Bit 0 Has surface description data (1 = yes, 0 = no)
 This data indicates if the corresponding bit on the FM/MFM encoded surface
 is a normal bit or a special bit (weak bit or hole, depending on the other bit):
 0 = The corresponding FM/MFM encoded surface bit is normal
 1 = The corresponding FM/MFM encoded surface bit is either a weak bit or a hole:
 Corresponding FM/MFM encoded bit is 0: Hole (noise on read, not overwritable)
 Corresponding FM/MFM encoded bit is 1: Weak bit (noise on read, overwritable)
 Bits 2, 1 Hole (3 = ED + 2000 kbps, 2 = ED, 1 = HD, 0 = DD)
 Bit 3 Sides (1 = 2 sides, 0 = 1 side)
 Bit 4 Write protect (1 = yes, 0 = no)
 Bit 5 Bitcell mode (1 = Extra bitcells count specified after
 disk flags, 0 = No extra bitcells)
 The maximum number of extra bitcells is 1024 (which
 after decoding translates to 64 bytes)
 Bit 6 Revolutions (0 = one revolution, 1 track has 16-bit number of revolutions)
00000008: Offsets of tracks
 Note that thick-track (eg. 360k) disks will have (tracks * 2) tracks, with each pair of tracks
 being identical to each other.
 Each side of each track is stored as its own track, in order (so, track 0 side 0, track 0 side 1,
 track 1 side 0, track 1 side 0, etc.).
 The table of the offsets of tracks is 2048 bytes long, each track offset is an unigned 32-bit
 integer. An offset of 00000000 indicates the track is not present in the file.
 As an example, an 86F representing a disk with 80 thin tracks and 2 sides per track, where all
 the tracks are present in the file, would have the first 160 offsets filled in, same for a disk
 with 40 thick tracks and 2 sides. Same with only 1 side but only the offsets at 0000000, 0000008,
 etc. (so every second offset) would be filled in.

Track offset + 00000000: Track flags (16-bit)
 Bits 4, 3 Encoding
 00 = FM
 01 = MFM
 10 = M2FM
 11 = GCR
 Bits 2, 1, 0 Bit rate, if encoding is MFM:
 000 = 500 kbps
 001 = 300 kbps
 010 = 250 kbps
 011 = 1000 kbps
 101 = 2000 kbps
 If encoding is FM, the bit rate is half that.
 The RPM is determined from track length and data rate.
Track offset + 00000002: Total bit cells count (32-bit)
Track offset + 00000006: Bit cell where index hole is (32-bit)
Track offset + 0000000A: FM/MFM/M2FM/GCR-encoded data (track length bytes)
Track offset + 0000000A + track length: Surface description data if present (track length bytes)

If this is a multi-revolution 86F, then track offset + 00000000 has a 16-bit number of track revolutions,
and the track header + data appears for each revolution, while surface description data, if present,
can appear any number of times, but only once per encoding + bit rate combination.
This needs work to properly make surface data work with flexible multi-revolution support.

Track lengths:
 The total bit cells count is always present.
 The track is stored as (bit cells >> 8) bytes, with one extra bit cells if the number of bit cells
 is not divisible by 8.

 Extended HDI (HDX)

Extended HDI (HDX)

A derivative of the Japanese FDI disk image format, with a more compact header as well as support for images larger than 4 GB.

Specification

All offsets are in hexadecimal. The [Translation] values are for future use.

00000000: Signature (59 54 44 44 20 A8 78 D7 / "YTDD " A8 78 D7)
00000008: Full size of the data in bytes (64-bit)
00000010: Sector size in bytes (32-bit)
00000014: Sectors per cylinder (32-bit)
00000018: Heads per cylinder (32-bit)
0000001C: Cylinders (32-bit)
00000020: [Translation] Sectors per cylinder (32-bit)
00000024: [Translation] Heads per cylinder (32-bit)
00000028: Raw data (size set in offset 00000008)

 Index

Index

 <no title>

_images/display.png

_images/display_small.png

_images/cdrom_small.png

_images/deviceconfig.png
€ Foo-1234 Device Configuration X

_images/floppy_525.png

_images/floppy_525_small.png

_images/floppy_35.png

_images/floppy_35_small.png

_images/floppy_and_cdrom_drives.png

_images/floppy_and_cdrom_drives_small.png

_images/hard_disk.png

nav.xhtml

 Table of Contents

 		
 About PCBox

 		
 Getting started

 		
 Frequently asked questions

 		
 What is the difference between PCBox and applications like VirtualBox or Virtual PC?

 		
 What is the difference between PCBox and QEMU?

 		
 What is the difference between PCBox and PCem?

 		
 My virtual machine does not run at 100% speed, what do I do?

 		
 What is the top VM configuration my system will handle?

 		
 ROM set

 		
 Search path

 		
 Menu bar

 		
 Action

 		
 View

 		
 Media

 		
 Tools

 		
 Help

 		
 Toolbar

 		
 Pause/resume execution

 		
 Hard reset

 		
 Press Ctrl+Alt+Del/Ctrl+Alt+Esc

 		
 Settings

 		
 Status area

 		
 Status bar

 		
 Cassette deck

 		
 PCjr cartridges

 		
 Floppy drives

 		
 CD-ROM drives

 		
 ZIP and MO drives

 		
 Hard disks

 		
 Network

 		
 Sound

 		
 Additional information area

 		
 Monitor sleep mode

 		
 ISABugger

 		
 POST card

 		
 Settings

 		
 Machine

 		
 Machine type / Machine

 		
 CPU type / Speed

 		
 FPU

 		
 Wait states

 		
 Memory

 		
 Dynamic Recompiler

 		
 Time synchronization

 		
 Display

 		
 Video

 		
 Video #2

 		
 Voodoo Graphics

 		
 8514/A / XGA

 		
 Input devices

 		
 Mouse

 		
 Joystick

 		
 Joystick 1-4…

 		
 Sound

 		
 Sound card

 		
 MIDI Out Device

 		
 MIDI In Device

 		
 Standalone MPU-401

 		
 Innovation SSI-2001

 		
 CMS / Game Blaster

 		
 Gravis Ultrasound

 		
 Use FLOAT32 sound

 		
 FM synth driver

 		
 Network

 		
 Network Interface Controllers

 		
 Ports (COM & LPT)

 		
 LPT1-4 Device

 		
 Serial port 1-4

 		
 Parallel port 1-4

 		
 Storage controllers

 		
 HD Controller

 		
 FD Controller

 		
 Tertiary / Quaternary IDE Controller

 		
 SCSI

 		
 Cassette

 		
 Hard disks

 		
 Hard disk list

 		
 Speed profiles

 		
 Adding a new disk

 		
 Adding an existing disk

 		
 Removing a disk

 		
 Floppy & CD-ROM drives

 		
 Floppy drives

 		
 CD-ROM drives

 		
 Other removable devices

 		
 MO / ZIP drives

 		
 Other peripherals

 		
 ISA RTC

 		
 ISA Memory Expansion

 		
 ISABugger

 		
 POST card

 		
 Machine-specific notes

 		
 8088

 		
 8086

 		
 80286

 		
 Socket 7

 		
 Socket 8

 		
 Slot 1

 		
 Slot 2

 		
 Socket 370

 		
 Miscellaneous

 		
 Footnotes

 		
 Disk images

 		
 Hard disk images

 		
 Hard disk size limits

 		
 Floppy disk images

 		
 Floppy disk detection

 		
 MO / ZIP removable disk images

 		
 CD-ROM / DVD-ROM optical disc images

 		
 CD audio

 		
 Cassette tape images

 		
 PCjr cartridge images

 		
 Creating and using disk images

 		
 Floppy: mtools (Linux, macOS)

 		
 CD-ROM: macOS

 		
 CD-ROM: Linux

 		
 Disk Image: macOS

 		
 Various: Windows

 		
 Tertiary and quaternary IDE

 		
 System resources

 		
 BIOS support

 		
 Operating system support

 		
 DOS and real mode

 		
 Windows 95, 98 and Me

 		
 Windows NT, 2000 and XP

 		
 Windows Vista and 7

 		
 Linux

 		
 Networking

 		
 SLiRP

 		
 PCap

 		
 Private PCap network

 		
 Advanced features

 		
 MAC address

 		
 SLiRP port forwarding

 		
 ISABugger

 		
 Background

 		
 Registers

 		
 Register reference

 		
 Build guide

 		
 Toolchain files

 		
 Presets

 		
 Obtaining the source code

 		
 Prerequisites

 		
 Obtaining the dependencies

 		
 Building

 		
 Advanced builds

 		
 Variants

 		
 Discontinued variants

 		
 API

 		
 Devices

 		
 State structure

 		
 Registration

 		
 Availability

 		
 Configuration
